Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 7 | 437--446
Tytuł artykułu

Analysis of the Mechanical Properties of Femurs and Eggshells of Two Selected Japanese Quail Lines Under Quasi-Static and Impact Loading Conditions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents the results of a dynamic two-point bending test and a quasi-static three-point bending test of the quail femurs. Bones from females and males of two genetic strains of Japanese quail belonging to various utility types were analyzed. Mechanical parameters obtained under impact and quasi-static loading conditions were investigated. The mechanical strength of eggshells under both loading conditions was also examined. The obtained results showed that the bones of males of both analyzed types of quails were characterized by statistically significant higher strength obtained under impact loading conditions compared to the bones of females. Moreover, the mechanical strength of the eggshell measured under impact loading conditions was characterized by higher values compared to the result obtained under quasi-static load conditions. The observed differences between quail genetic lines were not statistically significant. SEM–EDS qualitative elemental distribution analysis showed a higher content of calcium in the female femurs. The damage present on the fracture surface indicates that these bones were more brittle.
Wydawca

Rocznik
Strony
437--446
Opis fizyczny
Bibliogr. 33 poz., fig., tab.
Twórcy
autor
  • Department of Mechanical Engineering and Automation, University of Life Sciences in Lublin, ul. Głęboka 28, 20-612 Lublin, Poland, anna.skic@up.lublin.pl
  • Department of Mechanical Engineering and Automation, University of Life Sciences in Lublin, ul. Głęboka 28, 20-612 Lublin, Poland, pawel.kolodziej@up.lublin.pl
  • Department of Mechanical Engineering and Automation, University of Life Sciences in Lublin, ul. Głęboka 28, 20-612 Lublin, Poland, zbigniew.stropek@up.lublin.pl
  • Department of Mechanical Engineering and Automation, University of Life Sciences in Lublin, ul. Głęboka 28, 20-612 Lublin, Poland, karolina.beer-lech@up.lublin.pl
  • Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, ul. Akademicka 13, 20- 950 Lublin, Poland, kamil.drabik@up.lublin.pl
autor
  • Institute of Agrophysics, Polish Academy of Science, ul. Doświadczalna 4, 20-290 Lublin, Poland, k.skic@ipan.lublin.pl
  • Department of Mechanical Engineering, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), University of Coimbra, R. Luis Reis dos Santos, 3030-788 Coimbra, Portugal, ricardo.branco@dem.uc.pt
Bibliografia
  • 1. Whitehead C.C. Overview of bone biology in the egg-laying hen. Poultry Sci. 2004; 83: 193–199.
  • 2. Dumont E.R. Bone density and the lightweight skeletons of birds, Proc. R. Soc. B 2010; 277: 2193–2198.
  • 3. Tykałowski B., Stenzel T., Koncicki A. Selected problems related to ossification processes and their disorders in birds. Medycyna Wet. 2010; 66(7): 464–469.
  • 4. Rodriguez-Navarro A.B., McCormack H.M., Fleming R.H., Alvarez-Lloret P., Romero-Pastor J., Dominguez-Gasca N., Prozorov T., Dunn I.C. Influence of physical activity on tibial bone material properties in laying hens, J Struct Biol. 2018; 201(1): 36–45.
  • 5. Olgun O. The effect of dietary cadmium supplementation on performance, egg quality, tibia biomechanical properties and eggshell and bone mineralisation in laying quails, Animals 2015; 9(8): 1298–1303.
  • 6. Kaczanowska-Taraszkiewicz E. The effect of age and sex on some developmental parameters of quail (Coturnix coturnix Pharaoh) skeletal system. Medycyna Wet. 2001; 57: 510–514.
  • 7. Andrade K., Cruz F., Kaneko I., Nascimento M., Iwaki L., Santos T. Daily egg-cycle in Japanese Quail: serum biochemistry, bones, and oviduct changes. Braz. J. Poult. Sci. 2023; 25(2), eRBCA-2021-1599.
  • 8. Holmes D.J., Ottinger M.A. Birds as long-lived animal models for the study of aging. Exp. Gerontol. 2003; 38: 1365–1375.
  • 9. Suzer B., Petek M., Tufekci K., Arican I., Abdourhamane I.M., Yildiz H. Comparison of some biomechanical properties of tibiotarsus in four different feather color lines of 60-day old female quails. Braz. J. Poult. Sci. 2020; 22(2).
  • 10. Rath N.C., Huff G.R., Huff W.E., Balog J.M. Factors regulating bone maturity and strength in poultry. Poultry Sci. 2000; 79: 1024–1032.
  • 11. Trnka J., Nedomová Š., Kumbár V., Šustr M., Buchar J. A new approach to analyze the dynamic strength of eggs. J Biol Phys. 2016; 42(4): 525–537.
  • 12. Buchar J., Nedomova S., Trnka J., Strnkova J. Behaviour of Japanese quail eggs under mechanical compression, Int. J. Food Prop. 2015; 18: 1110–1118.
  • 13. Nedomova S., Kumbar V., Trnka J., Buchar J. Effect of the loading rate on compressive properties of goose eggs. J. Biol. Phys. 2016; 42(2): 223–233.
  • 14. Macek W., Branco R., Szala M., Marciniak Z., Ulewicz R., Sczygiol N., Kardasz P. Profile and areal surface parameters for fatigue fracture characterisation. Materials 2020; 13: 3691.
  • 15. Nedomova S., Trnka J., Dvorakova P., Buchar J. Hen’s eggshell strength under impact loading. J. Food Eng. 2009; 94(3–4): 350–357.
  • 16. Bonagurio L.P., Cruz F.K., Kaneko I.N., Matumoto-Pintro P.T., Murakami A.E., Santos T.C. Dietary supplementation with canthaxanthin and 25-hydroxycholecalciferol has beneficial effects on bone and oxidative metabolism in European quail breeders, Poultry Sci., 2020; 99(10): 4874–4883.
  • 17. Lee J., Tompkins Y., Kim D.H., Kim W.K., Lee K. The effects of myostatin mutation on the tibia bone quality in female Japanese quail before and after sexual maturation, Poultry Sci. 2023; 102(7).
  • 18. Süzer B. Biomechanical comparison of the effects of the storage temperature on tibiotarsus in Japanese quail. J Res Vet Med. 2021; 40(2): 131–135.
  • 19. Skic A., Kołodziej P., Puzio I., Tymicki G., Beer-Lech K., Gołacki K. Methodological aspects of rat bone mechanical impact. Adv Sci Technol-Res. 2022; 16(6): 140–146.
  • 20. Jepsen K.J., Silva M.J., Vashishth D., Guo X.E., van der Meulen M.C. Establishing biomechanical mechanisms in mouse models: practical guidelines for systematically evaluating phenotypic changes in the diaphyses of long bones. J Bone Miner Res. 2015; 30(6): 951–66.
  • 21. Skic A., Puzio I., Tymicki G., Kołodziej P., Pawłowska-Olszewska M., Skic K., Beer-Lech K., Bieńko M., Gołacki K. Effect of Nesfatin-1 on rat humerus mechanical properties under quasi-static and impact loading conditions. Materials, 2022; 15: 333
  • 22. Kato Y., Yakumaru H., Ayama K., Oikawa M., Homma-Takeda S. Quantitative elemental analysis of rat bone using micro-PIXE analysis. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2024; 555: 165473.
  • 23. Kourkoumelis N., Balatsoukas I., Tzaphlidou M. Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy J. Biol. Phys., 2012; 38: 279–291,
  • 24. Zoehrer R., Perilli E., Kuliwaba J.S., Shapter J.G., Fazzalari N.L., Voelcker N.H. Human bone material characterization: integrated imaging surface investigation of male fragility fractures Osteoporos Int., 2012; 23: 1297–1309.
  • 25. Hassan M.H.A., Geasa M.M.M. Determination of mechanical behavior and physical properties of quail eggs. J. Soil Sci. Agric. Eng, 2022; 13(2): 59–63.
  • 26. Von Euw S., Wang Y., Laurent G., Drouet Ch., Babonneau F., Nassif N., Azaïs T. Bone mineral: new insights into its chemical composition. Sci Rep., 2019; 9: 8456.
  • 27. Roohani I., Cheong S., Wang A. How to build a bone? - Hydroxyapatite or Posner’s clusters as bone minerals, Open Ceram., 2021, 6: 100092.
  • 28. Mehta R., Chowdhury P., Ali N. Scanning electron microscope studies of bone samples: Influence of simulated microgravity, Nucl. Instrum. Methods Phys. Res., B, 2007; 261(1–2): 908–912.
  • 29. Prati C., Zamparini F., Botticelli D., Ferri M., Yonezawa D., Piattelli A., Gandolfi M.G. The use of ESEM-EDX as an innovative tool to analyze the mineral structure of perimplant human bone. Materials 2020; 13: 1671.
  • 30. Imai H., Prati C., Zamparini F., Iezzi G., Botticelli D., Gandolfi M.G., Baba S. ESEM-EDX mineralization and morphological analysis of human retrieved maxillary sinus bone graft biopsies before loading. J. Funct. Biomater. 2023; 14: 391.
  • 31. Gautron J., Stapane L., Le Roy N., Nys Y., Rodriguez-Navarro A.B., Hincke M.T. Avian eggshell biomineralization: an update on its structure, mineralogy and protein tool kit. BMC Mol and Cell Biol, 2021; 22: 11.
  • 32. Drabik K., Batkowska J., Vasiukov K., Pluta A. The impact of eggshell colour on the quality of table and hatching eggs derived from Japanese Quail. Animals, 2020; 10: 264.
  • 33. Sezer M., Tekelioglu O. Quantification of Japanese quail eggshell colour by image analysis. Biol. Res. 2009; 42: 99–105.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3102b165-b9d4-47ae-96c1-612072dca348
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.