Warianty tytułu
Języki publikacji
Abstrakty
A novel photocatalytic process using a modification of photo-Fenton reaction, with sodium percarbonate (SP), as an alternative source of H2O2, and alloy Al65Cu20Fe15 containing, among others, quasicrystals (of the percentage composition Al65Cu20Fe15), being a source of iron ions, effectively decolourizes the aqueous solution of rhodamine B (RB; solution of 5 mg/l). The source of UV radiation was a lamp with a power of 36 W. The experiments were carried out at pH = 7 and reaction time (from 5 to 60 min). The increase in SP concentration (in the range of 8.3 to 33.3 g/l) significantly increased the degree of degradation of RB and the reaction rate. However, the use of quasicrystals, in the range of 8.3 to 33.3 g/l, was also important in the modified photocatalytic photo-Fenton process. The best degradation effects of RB (95%) were obtained for the highest SP concentration of 33.3 g/l and the lowest quasicrystal concentration of 8.3 g/l. On the other hand, visual decolourization of RB was obtained with an efficiency of 70% for SP and quasicrystal concentrations of 16.7 g/l and 16.7 g/l, respectively, after 45 minutes, and for SP and quasicrystal concentrations of 33.3 g/l and 8.3 g/l, respectively, after the time of 20 minutes. The best RB degradation effects in the comparative method (UV/Na2CO3·1.5H2O2 without the addition of quasicrystals) were only 52.7%. The obtained results encourage further research to optimize the conditions of the proposed method and to investigate its applicability to other types of dyes and pollutants.
Czasopismo
Rocznik
Tom
Strony
171--176
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- MSc; Department of Water and Wastewater Engineering, PhD School, Silesian University of Technology,Konarskiego 18, 44-100 Gliwice, Poland, Sylwester.Lonski@polsl.pl
autor
- MSc; Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a,44-100 Gliwice, Poland
autor
- Prof.; Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a,44-100 Gliwice, Poland
autor
- Prof.; Department of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18,44-100 Gliwice, Poland
Bibliografia
- [1] M. Soylak, Y.E. Unsal, E. Yilmaz, M. Tuzen, (2011). Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food and Chemical Toxicology, 4, 1796–1799. https://doi.org/10.1016/J.FCT.2011.04.030.
- [2] M. Alesso, G. Bondioli, M.C. Talío, M.O. Luconi, L.P. Fernández, (2012). Micelles mediated separation fluorimetric methodology for Rhodamine B determination in condiments, snacks and candies. Food Chem. 134, 513–517. https://doi.org/10.1016/J.FOODCHEM.2012.02.110.
- [3] A.K. Al-Buriahi, A.A. Al-Gheethi, P. Senthil Kumar, R.M.S. Radin Mohamed, H. Yusof, A.F. Alshalif, N.A. Khalifa, (2022). Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. Chemosphere, 287, 132162. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132162.
- [4] A.A. Al-Gheethi, Q.M. Azhar, P. Senthil Kumar, A.A. Yusuf, A.K. Al-Buriahi, R.M.S. Radin Mohamed, M.M. Al-shaibani, (2022). Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review, Chemosphere. 287, 132080. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132080.
- [5] H. Lee, S.H. Park, Y.K. Park, B.H. Kim, S.J. Kim, S.C. Jung, (2013). Rapid destruction of the rhodamine B using TiO2 photocatalyst in the liquid phase plasma. Chem Cent J., 7. https://doi.org/10.1186/1752-153X-7-156.
- [6] M.A. Hossain, M.S. Alam, (2012). Adsorption kinetics of Rhodamine-B on used black tea leaves. Iranian J Environ Health Sci Eng, 9, 1–7. https://doi.org/10.1186/1735-2746-9-2/TABLES/1.
- [7] S. Arris, I. Brahmia, L. Bousbaa, (2012). Experimental Study of Removal of Rhodamine B by an Activated Cereal by Product. Energy Procedia, 18 1208–1219. https://doi.org/10.1016/J.EGYPRO.2012.05.136.
- [8] P.M. Rowiński, M.M. Chrzanowski, (2011). Influence of selected fluorescent dyes on small aquatic organisms. Acta Geophysica, 59, 91–109. https://doi.org/10.2478/S11600-010-0024-7/METRICS.
- [9] F.H. AlHamedi, M.A. Rauf, S.S. Ashraf, (2009). Degradation studies of Rhodamine B in the presence of UV/H2O2. Desalination, 239, 159–166. https://doi.org/10.1016/J.DESAL.2008.03.016.
- [10] G. Ruppert, R. Bauer, G. Heisler, (1993). The photo-Fenton reaction — an effective photochemical waste-water treatment process. J Photochem Photobiol A Chem, 73, 75–78. https://doi.org/10.1016/1010-6030(93)80035-8.
- [11] H.J.H. Fenton, (1894). LXXIII. – Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 65, 899–910. https://doi.org/10.1039/CT8946500899.
- [12] L.G. Devi, M. Srinivas, M.L. ArunaKumari, (2016) Heterogeneous advanced photo-Fenton process using peroxymonosulfate and peroxydisulfate in presence of zero valent metallic iron: A comparative study with hydrogen peroxide photo-Fenton process. Journal of Water Process Engineering, 13, 117–126. https://doi.org/10.1016/J.JWPE.2016.08.004.
- [13] K. Barbusiński, J. Majewski, (2003). Discoloration of Azo Dye Acid Red 18 by Fenton Reagent in the Presence of Iron Powder. Pol J Environ Stud. 12, 151–155. http://www.pjoes.com/Discoloration-of-Azo-Dye-Acid-Red-18-by-Fenton-r-nReagent-in-the-Presence-of-Iron,87538,0,2.html (accessed May 7, 2023).
- [14] K. Barbusiński, (2005), The modified Fenton process for decolorization of dye wastewater. Pol J Environ Stud., 14, 281–285.
- [15] A. Radoń, S. Łoński, T. Warski, R. Babilas, T. Tański, M. Dudziak, D. Łukowiec, (2019). Catalytic activity of non-spherical shaped magnetite nanoparticles in degradation of Sudan I, Rhodamine B and Methylene Blue dyes. Appl Surf Sci., 487, 1018–1025. https://doi.org/10.1016/J.APSUSC.2019.05.091.
- [16] A. Radoń, S. Łoński, M. Kądziołka-Gaweł, P. Gębara, M. Lis, D. Łukowiec, R. Babilas, (2020). Influence of magnetite nanoparticles surface dissolution, stabilization and functionalization by malonic acid on the catalytic activity, magnetic and electrical properties. Colloids Surf A Physicochem Eng Asp, 607, 125446. https://doi.org/10.1016/J.COLSURFA.2020.125446.
- [17] Z. Jia, J. Kang, W.C. Zhang, W.M. Wang, C. Yang, H. Sun, D. Habibi, L.C. Zhang, (2017). Surface ageing behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment. Appl Catal B. 204, 537–547. https://doi.org/10.1016/J.APCATB.2016.12.001.
- [18] W. Łoński, M. Spilka, M. Kądziołka-Gaweł, P. Gębara, A. Radoń, T. Warski, S. Łoński, K. Barbusiński, K. Młynarek-Żak, R. Babilas, (2023). Microstructure, magnetic properties, corrosion resistance and catalytic activity of dual-phase AlCoNiFeTi and AlCoNiFeTiSi high entropy alloys. J Alloys Compd, 934, 167827. https://doi.org/10.1016/J.JALLCOM.2022.167827.
- [19] V.N. Balbyshev, D.J. King, A.N. Khramov, L.S. Kasten, M.S. Donley, (2004). Investigation of quaternary Al-based quasicrystal thin films for corrosion protection. Thin Solid Films, 447–448, 558–563. https://doi.org/10.1016/J.TSF.2003.07.026.
- [20] Sodium percarbonate as an agent for effective treatment of industrial wastewater, (n.d.). https://www.researchgate.net/publication/291155615_Sodium_percarbonate_as_an_agent_for_effective_treatment_of_industrial_wastewater (accessed May 7, 2023).
- [21] B. Pieczykolan, I. Płonka, K. Barbusiński, (2016). Discoloration of dye wastewater by modified UV-Fenton process with sodium percarbonate, Architecture, Civil Engineering, Environment, 9(4). https://doi.org/10.21307/acee-2016-060.
- [22] R. Bauer, H. Fallmann, (1997). The Photo-Fenton oxidation – A cheap and efficient wastewater treatment method. Research on Chemical Intermediates, 23, 341–354. https://doi.org/10.1163/156856797X00565/METRIC.
- [23] R. Babilas, A. Bajorek, M. Spilka, A. Radoń, W. Łoński, (2020). Structure and corrosion resistance of Al–Cu–Fe alloys. Progress in Natural Science: Materials International, 30, 393–401. https://doi.org/10.1016/J.PNSC.2020.06.002.
- [24] D. V. Louzguine-Luzgin, A. Inoue, (2008). Formation and properties of quasicrystals. Annu Rev Mater Res, 38, 403–423. https://doi.org/10.1146/ANNUREV.MATSCI.38.060407.130318.
- [25] L. Lityńska-Dobrzyńska, M. Mitka, A. Góral, K. Stan-Głowińska, J. Dutkiewicz, (2016). Microstructure and mechanical properties of aluminium matrix composites reinforced by Al62Cu25.5Fe12.5 melt spun ribbon. Mater Charact, 117, 127–133. https://doi.org/10.1016/J.MATCHAR.2016.04.025.
- [26] K. Młynarek-Żak, W. Pakieła, D. Łukowiec, A. Bajorek, P. Gębara, A. Szakál, I. Dhiman, R. Babilas, (2022). Structure and selected properties of Al–Cr–Fe alloys with the presence of structurally complex alloy phases. Scientific Reports, 12, 1–12. https://doi.org/10.1038/s41598-022-17870-0.
- [27] R. Babilas, K. Młynarek, W. Łoński, D. Łukowiec, M. Kadziołka-Gaweł, T. Czeppe, L. Temleitner, (2020). Structural Characterization of Al65Cu20Fe15 Melt-Spun Alloy by X-ray, Neutron Diffraction, High-Resolution Electron Microscopy and Mössbauer Spectroscopy. Materials 14, 54. https://doi.org/10.3390/MA14010054.
- [28] Q. Wang, Y. Yang, S. Ma, J. Wu, T. Yao, (2020). Preparation of Fe3O4@Prussian blue core/shell composites for enhanced photo-Fenton degradation of rhodamine B. Colloids Surf A Physicochem Eng Asp, 606, 125416. https://doi.org/10.1016/J.COLSURFA.2020.125416.
- [29] J. Zhang, M. Yan, G. Sun, X. Li, B. Hao, K. Liu, (2022). Mg–Fe–Al–O spinel: Preparation and application as a heterogeneous photo-Fenton catalyst for degrading Rhodamine B. Chemosphere, 304, 135318. https://doi.org/10.1016/J.CHEMOSPHERE.2022.135318.
- [30] F. Chen, S. Xie, X. Huang, X. Qiu, (2017). Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2. J Hazard Mater, 322, 152–162.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-30f7cb39-2441-42f5-b012-380ac1c9bea2