Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 16, no. 2 | 171--176
Tytuł artykułu

Photocatalytic decolourization of rhodamine b by modified photo-Fenton process with quasicrystals - preliminary research

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel photocatalytic process using a modification of photo-Fenton reaction, with sodium percarbonate (SP), as an alternative source of H2O2, and alloy Al65Cu20Fe15 containing, among others, quasicrystals (of the percentage composition Al65Cu20Fe15), being a source of iron ions, effectively decolourizes the aqueous solution of rhodamine B (RB; solution of 5 mg/l). The source of UV radiation was a lamp with a power of 36 W. The experiments were carried out at pH = 7 and reaction time (from 5 to 60 min). The increase in SP concentration (in the range of 8.3 to 33.3 g/l) significantly increased the degree of degradation of RB and the reaction rate. However, the use of quasicrystals, in the range of 8.3 to 33.3 g/l, was also important in the modified photocatalytic photo-Fenton process. The best degradation effects of RB (95%) were obtained for the highest SP concentration of 33.3 g/l and the lowest quasicrystal concentration of 8.3 g/l. On the other hand, visual decolourization of RB was obtained with an efficiency of 70% for SP and quasicrystal concentrations of 16.7 g/l and 16.7 g/l, respectively, after 45 minutes, and for SP and quasicrystal concentrations of 33.3 g/l and 8.3 g/l, respectively, after the time of 20 minutes. The best RB degradation effects in the comparative method (UV/Na2CO3·1.5H2O2 without the addition of quasicrystals) were only 52.7%. The obtained results encourage further research to optimize the conditions of the proposed method and to investigate its applicability to other types of dyes and pollutants.
Wydawca

Rocznik
Strony
171--176
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • MSc; Department of Water and Wastewater Engineering, PhD School, Silesian University of Technology,Konarskiego 18, 44-100 Gliwice, Poland, Sylwester.Lonski@polsl.pl
  • MSc; Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a,44-100 Gliwice, Poland
  • Prof.; Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a,44-100 Gliwice, Poland
  • Prof.; Department of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18,44-100 Gliwice, Poland
Bibliografia
  • [1] M. Soylak, Y.E. Unsal, E. Yilmaz, M. Tuzen, (2011). Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food and Chemical Toxicology, 4, 1796–1799. https://doi.org/10.1016/J.FCT.2011.04.030.
  • [2] M. Alesso, G. Bondioli, M.C. Talío, M.O. Luconi, L.P. Fernández, (2012). Micelles mediated separation fluorimetric methodology for Rhodamine B determination in condiments, snacks and candies. Food Chem. 134, 513–517. https://doi.org/10.1016/J.FOODCHEM.2012.02.110.
  • [3] A.K. Al-Buriahi, A.A. Al-Gheethi, P. Senthil Kumar, R.M.S. Radin Mohamed, H. Yusof, A.F. Alshalif, N.A. Khalifa, (2022). Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. Chemosphere, 287, 132162. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132162.
  • [4] A.A. Al-Gheethi, Q.M. Azhar, P. Senthil Kumar, A.A. Yusuf, A.K. Al-Buriahi, R.M.S. Radin Mohamed, M.M. Al-shaibani, (2022). Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review, Chemosphere. 287, 132080. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132080.
  • [5] H. Lee, S.H. Park, Y.K. Park, B.H. Kim, S.J. Kim, S.C. Jung, (2013). Rapid destruction of the rhodamine B using TiO2 photocatalyst in the liquid phase plasma. Chem Cent J., 7. https://doi.org/10.1186/1752-153X-7-156.
  • [6] M.A. Hossain, M.S. Alam, (2012). Adsorption kinetics of Rhodamine-B on used black tea leaves. Iranian J Environ Health Sci Eng, 9, 1–7. https://doi.org/10.1186/1735-2746-9-2/TABLES/1.
  • [7] S. Arris, I. Brahmia, L. Bousbaa, (2012). Experimental Study of Removal of Rhodamine B by an Activated Cereal by Product. Energy Procedia, 18 1208–1219. https://doi.org/10.1016/J.EGYPRO.2012.05.136.
  • [8] P.M. Rowiński, M.M. Chrzanowski, (2011). Influence of selected fluorescent dyes on small aquatic organisms. Acta Geophysica, 59, 91–109. https://doi.org/10.2478/S11600-010-0024-7/METRICS.
  • [9] F.H. AlHamedi, M.A. Rauf, S.S. Ashraf, (2009). Degradation studies of Rhodamine B in the presence of UV/H2O2. Desalination, 239, 159–166. https://doi.org/10.1016/J.DESAL.2008.03.016.
  • [10] G. Ruppert, R. Bauer, G. Heisler, (1993). The photo-Fenton reaction — an effective photochemical waste-water treatment process. J Photochem Photobiol A Chem, 73, 75–78. https://doi.org/10.1016/1010-6030(93)80035-8.
  • [11] H.J.H. Fenton, (1894). LXXIII. – Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 65, 899–910. https://doi.org/10.1039/CT8946500899.
  • [12] L.G. Devi, M. Srinivas, M.L. ArunaKumari, (2016) Heterogeneous advanced photo-Fenton process using peroxymonosulfate and peroxydisulfate in presence of zero valent metallic iron: A comparative study with hydrogen peroxide photo-Fenton process. Journal of Water Process Engineering, 13, 117–126. https://doi.org/10.1016/J.JWPE.2016.08.004.
  • [13] K. Barbusiński, J. Majewski, (2003). Discoloration of Azo Dye Acid Red 18 by Fenton Reagent in the Presence of Iron Powder. Pol J Environ Stud. 12, 151–155. http://www.pjoes.com/Discoloration-of-Azo-Dye-Acid-Red-18-by-Fenton-r-nReagent-in-the-Presence-of-Iron,87538,0,2.html (accessed May 7, 2023).
  • [14] K. Barbusiński, (2005), The modified Fenton process for decolorization of dye wastewater. Pol J Environ Stud., 14, 281–285.
  • [15] A. Radoń, S. Łoński, T. Warski, R. Babilas, T. Tański, M. Dudziak, D. Łukowiec, (2019). Catalytic activity of non-spherical shaped magnetite nanoparticles in degradation of Sudan I, Rhodamine B and Methylene Blue dyes. Appl Surf Sci., 487, 1018–1025. https://doi.org/10.1016/J.APSUSC.2019.05.091.
  • [16] A. Radoń, S. Łoński, M. Kądziołka-Gaweł, P. Gębara, M. Lis, D. Łukowiec, R. Babilas, (2020). Influence of magnetite nanoparticles surface dissolution, stabilization and functionalization by malonic acid on the catalytic activity, magnetic and electrical properties. Colloids Surf A Physicochem Eng Asp, 607, 125446. https://doi.org/10.1016/J.COLSURFA.2020.125446.
  • [17] Z. Jia, J. Kang, W.C. Zhang, W.M. Wang, C. Yang, H. Sun, D. Habibi, L.C. Zhang, (2017). Surface ageing behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment. Appl Catal B. 204, 537–547. https://doi.org/10.1016/J.APCATB.2016.12.001.
  • [18] W. Łoński, M. Spilka, M. Kądziołka-Gaweł, P. Gębara, A. Radoń, T. Warski, S. Łoński, K. Barbusiński, K. Młynarek-Żak, R. Babilas, (2023). Microstructure, magnetic properties, corrosion resistance and catalytic activity of dual-phase AlCoNiFeTi and AlCoNiFeTiSi high entropy alloys. J Alloys Compd, 934, 167827. https://doi.org/10.1016/J.JALLCOM.2022.167827.
  • [19] V.N. Balbyshev, D.J. King, A.N. Khramov, L.S. Kasten, M.S. Donley, (2004). Investigation of quaternary Al-based quasicrystal thin films for corrosion protection. Thin Solid Films, 447–448, 558–563. https://doi.org/10.1016/J.TSF.2003.07.026.
  • [20] Sodium percarbonate as an agent for effective treatment of industrial wastewater, (n.d.). https://www.researchgate.net/publication/291155615_Sodium_percarbonate_as_an_agent_for_effective_treatment_of_industrial_wastewater (accessed May 7, 2023).
  • [21] B. Pieczykolan, I. Płonka, K. Barbusiński, (2016). Discoloration of dye wastewater by modified UV-Fenton process with sodium percarbonate, Architecture, Civil Engineering, Environment, 9(4). https://doi.org/10.21307/acee-2016-060.
  • [22] R. Bauer, H. Fallmann, (1997). The Photo-Fenton oxidation – A cheap and efficient wastewater treatment method. Research on Chemical Intermediates, 23, 341–354. https://doi.org/10.1163/156856797X00565/METRIC.
  • [23] R. Babilas, A. Bajorek, M. Spilka, A. Radoń, W. Łoński, (2020). Structure and corrosion resistance of Al–Cu–Fe alloys. Progress in Natural Science: Materials International, 30, 393–401. https://doi.org/10.1016/J.PNSC.2020.06.002.
  • [24] D. V. Louzguine-Luzgin, A. Inoue, (2008). Formation and properties of quasicrystals. Annu Rev Mater Res, 38, 403–423. https://doi.org/10.1146/ANNUREV.MATSCI.38.060407.130318.
  • [25] L. Lityńska-Dobrzyńska, M. Mitka, A. Góral, K. Stan-Głowińska, J. Dutkiewicz, (2016). Microstructure and mechanical properties of aluminium matrix composites reinforced by Al62Cu25.5Fe12.5 melt spun ribbon. Mater Charact, 117, 127–133. https://doi.org/10.1016/J.MATCHAR.2016.04.025.
  • [26] K. Młynarek-Żak, W. Pakieła, D. Łukowiec, A. Bajorek, P. Gębara, A. Szakál, I. Dhiman, R. Babilas, (2022). Structure and selected properties of Al–Cr–Fe alloys with the presence of structurally complex alloy phases. Scientific Reports, 12, 1–12. https://doi.org/10.1038/s41598-022-17870-0.
  • [27] R. Babilas, K. Młynarek, W. Łoński, D. Łukowiec, M. Kadziołka-Gaweł, T. Czeppe, L. Temleitner, (2020). Structural Characterization of Al65Cu20Fe15 Melt-Spun Alloy by X-ray, Neutron Diffraction, High-Resolution Electron Microscopy and Mössbauer Spectroscopy. Materials 14, 54. https://doi.org/10.3390/MA14010054.
  • [28] Q. Wang, Y. Yang, S. Ma, J. Wu, T. Yao, (2020). Preparation of Fe3O4@Prussian blue core/shell composites for enhanced photo-Fenton degradation of rhodamine B. Colloids Surf A Physicochem Eng Asp, 606, 125416. https://doi.org/10.1016/J.COLSURFA.2020.125416.
  • [29] J. Zhang, M. Yan, G. Sun, X. Li, B. Hao, K. Liu, (2022). Mg–Fe–Al–O spinel: Preparation and application as a heterogeneous photo-Fenton catalyst for degrading Rhodamine B. Chemosphere, 304, 135318. https://doi.org/10.1016/J.CHEMOSPHERE.2022.135318.
  • [30] F. Chen, S. Xie, X. Huang, X. Qiu, (2017). Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2. J Hazard Mater, 322, 152–162.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-30f7cb39-2441-42f5-b012-380ac1c9bea2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.