Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 35, No. 3 | 606--617
Tytuł artykułu

Optimum response of functionally graded piezoelectric plates in thermal environments

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the static response of the functionally graded piezoelectric (FGP) plates with piezoelectric layers (sandwich FGPM) is studied based on the first order shear deformation plate theory. The plate is under mechanical, electrical and thermal loadings and finite element method is employed to obtain the solution of the equation. All mechanical, thermal and piezoelectric properties, except Poisson ratio, obey the power law distribution through the thickness. By solving the governing equation, optimum value of power law index is investigated in each type of loading. The effects of different volume fraction index, layer arrangements, various boundary conditions and different loading types, are studied on the deflection of FGPM plate. It is inferred that, the correlations between the deflection, power law index and layer arrangement are completely different in the mechanical and thermal loading and the optimum value of the power law index should be selected in each case separately. This optimum values can be used as a design criterion to build a reliable sensors and actuators in thermal environments.
Wydawca

Rocznik
Strony
606--617
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Mechanical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
autor
  • Mechanical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran, Behjat@sut.ac.ir
Bibliografia
  • [1] BRANCO P.J.C., DENTE J.A. Smart Mater. Struct., 4 (2004), 631.
  • [2] GU H., MOSLEHY Y., SANDERS D., SONQ G., MO Y.L., Smart Mater. Struct., 6 (2010), 65026.
  • [3] KM L., XQ H., NG T.Y., SIVASHANKER S., Int. J. Numer. Meth. Eng., 11 (2001), 1253.
  • [4] WU C.P., JIANG R.-Y., J. Intel. Mat. Syst. Str., 7 (2011), 691.
  • [5] WU X.H., SHEN Y.P., TIAN X.-G., Int. J. Solids Struct., 20 (2002), 5325.
  • [6] ZHONG Z., SHANG E.T., Int. J. Solids Struct., 20 (2003), 5335.
  • [7] LEE H.J., J. Intel. Mat. Syst. Str., 4 (2005), 365.
  • [8] XIANG H.J., SHI Z., J. Intel. Mat. Syst. Str., 7 (2007), 719.
  • [9] ZHONG Z., SHANG E.T., J. Intel. Mat. Syst. Str., 8 (2005), 643.
  • [10] YANG J., XIANG H.J., Smart Mater. Struct., 3 (2007), 784.
  • [11] XIANG H.J., SHI Z.F., Eur. J. Mech. A-Solid., 2 (2009), 338.
  • [12] ALIBEIGLOO A., Compos. Struct., 2 (2011), 961.
  • [13] KOMEILI A., AKBARZADEH A.H., ESLAMI M.R., Adv. Mech. Eng., 3 (2011), 153731.
  • [14] BEHJAT B., KHOSHRAVAN M., Compos. Struct., 3 (2012), 874.
  • [15] NECHIBVUTE A., CHAWANDA A., LUHANGA P., ISRN Mater. Sci., 2012 (2012), 1.
  • [16] LI Y.S., FENG W.J., CAI Z.Y., Compos. Struct., 115 (2014), 41.
  • [17] NOURMOHAMMADI H., BEHJAT B., J. Intel. Mat. Syst. Str., 16 (2016), 2249.
  • [18] YILDIRIM B., DAG S., ERDOGAN F., Int. J. Fracture, 4 (2005), 371.
  • [19] REDDY J., Int. J. Numer. Meth. Eng., 3 (2000), 663.
  • [20] NG T.Y., LAM K.Y., LIEW K.M., REDDY J.N., Int. J. Solids .Struct., 8 (2001), 1295.
  • [21] REDDY J.N., Eng. Struct., 7 (1999), 568.
  • [22] VARELIS D., SARAVANOS D.A., Int. J. Numer. Meth. Eng., 1 (2008), 84.
  • [23] BANSAL A., RAMASWAMY A., J. Intel. Mat. Syst. Str., 5 (2002), 291.
  • [24] DAI K.Y., LIU G.R., HAN X., LIM K.M., Comput. Struct., 18 (2005), 1487.
  • [25] BLANDFORD G.E., TAUCHERT T.R., DU Y., Compos. Part B-Eng., 1 (1999), 51.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-30e7cd97-de7f-46e5-8b6a-1aaf9a309814
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.