Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 43, no. 2 | 442--462
Tytuł artykułu

Wavelet-Hilbert transform based bidirectional least squares grey transform and modified binary grey wolf optimization for the identification of epileptic EEGs

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wavelet based seizure detection is an importance topic for epilepsy diagnosis via electroencephalogram (EEG), but its performance is closely related to the choice of wavelet bases. To overcome this issue, a fusion method of wavelet packet transformation (WPT), Hilbert transform based bidirectional least squares grey transform (HTBiLSGT), modified binary grey wolf optimization (MBGWO) and fuzzy K-Nearest Neighbor (FKNN) was proposed. The HTBiLSGTwas first proposed to model the envelope change of a signal, then WPT based HTBiLSGT was developed for EEG feature extraction by performing HTBiLSGT for each subband of each wavelet level. To select discriminative features, MBGWO was further put forward and employed to conduct feature selection, and the selected features were finally fed into FKNN for classification. The Bonn and CHB-MIT EEG datasets were used to verify the effectiveness of the proposed technique. Experimental results indicate the proposed WPT based HTBiLSGT, MBGWO and FKNN can respectively lead to the highest accuracies of 100% and 98.60 ± 1.35% for the ternary and quinary classification cases of Bonn dataset, it also results in the overall accuracy of 99.48 ± 0.61 for the CHB-MIT dataset, and the proposal is proven to be insensitive to the choice of wavelet bases.
Wydawca

Rocznik
Strony
442--462
Opis fizyczny
Bibliogr. 78 poz., rys., tab., wykr.
Twórcy
autor
  • College of Communication Engineering, Jilin University, Changchun, China
  • School of Medical Information, Changchun University of Chinese Medicine, China
  • College of Communication Engineering, Jilin University, Changchun, China
autor
Bibliografia
  • [1] Cherian R, Kanaga EG. Theoretical and methodological analysis of EEG based seizure detection and prediction: An exhaustive review. J Neurosci Methods 2022;369:109483.
  • [2] Zhang T, Chen W, Li M. Automatic seizure detection of electroencephalogram signals based on frequency slice wavelet transform and SVM. Acta Phys Sin-Chin Ed 2016;65 (3):038703.
  • [3] Swami P, Gandhi TK, Panigrahi BK, Tripathi M, Anand S. A novel robust diagnostic model to detect seizures in electroencephalography. Expert Syst Appl 2016;56:116-30.
  • [4] Tseng H, Hsiao Y, Yi P, Chang F. Deep brain stimulation increases seizure threshold by altering REM sleep and delta powers during NREM sleep. Front Neurol 2020;11:752.
  • [5] Zeynab M, Mahda N, Naghmeh M, Mohammad S, Javad H. Complex network based models of ECoG signals for detection of induced epileptic seizures in rats. Cogn Neurodyn 2019;13:325-39.
  • [6] Tang Y, Durand DM. A tunable support vector machine assembly classifier for epileptic seizure detection. Expert Syst Appl 2012;39(4):3925-38.
  • [7] Zhang T, Chen W, Li M. Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random forest. Biocybern Biomed Eng 2018;38:519-34.
  • [8] Xu X, Lin M, Xu T. Epilepsy seizures prediction based on nonlinear features of EEG signal and gradient boosting decision tree. Int J Environ Res Public Health 2022;19:11326.
  • [9] Prasanna J, Subathra MSP, Mohammed MA, Damaševičius R, Sairamya NJ, George ST. Automated Epileptic Seizure Detection in Pediatric Subjects of CHB-MIT EEG Database-A Survey. J Personal Med 2021;11(10):1028.
  • [10] Savadkoohi M, Oladunni T, Thompson L. A machine learning approach to epileptic seizure prediction using Electroencephalogram (EEG) signal. Biocybern Biomed Eng 2020;40:1328-41.
  • [11] Bairy GM, Bhat S, Niranjan UC. Automated Classification of epileptic electroencephalogram signals using wavelet entropies and energies. J Med Imag Health Informat 2014;4 (6):868-73.
  • [12] Kumar Y, Dewal ML, Anand RS. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. SIViP 2014;8(7):1323-34.
  • [13] Martis RJ, Tan JH, Chua CK, Loon TC, Jie SYW, Tong L. Epileptic EEG classification using nonlinear parameters on different frequency bands. J Mech Med Biol 2015;15(3):1550040.
  • [14] Murugavel AS, Ramakrishnan S. Hierarchical multi-class SVM with ELM kernel for epileptic EEG signal classification. Med Biol Eng Compu 2016;54(1):149-61.
  • [15] Li M, Chen W, Zhang T. Automatic epilepsy detection using wavelet-based nonlinear analysis and optimized SVM. Biocybern Biomed Eng 2016;36(4):708-18.
  • [16] Li M, Chen W, Zhang T. Application of MODWT and log-normal distribution model for automatic epilepsy identification. Biocybern Biomed Eng 2017;37(4):679-89.
  • [17] Zhang T, Chen W, Li M. Fuzzy distribution entropy and its application in automated seizure detection technique. Biomed Signal Process Control 2018;39:360-77.
  • [18] Zhang T, Chen W, Li M. Complex-valued distribution entropy and its application for seizure detection. Biocybern Biomed Eng 2020;40(1):306-23.
  • [19] Zhang T, Han Z, Juan X, Li M, Chen W, You Y, et al. Assessing multi-layered nonlinear characteristics of ECG/EEG signal via adaptive kernel density estimation-based hierarchical entropies. Biomed Signal Process Control 2021;67:102520.
  • [20] Zhang T, Han Z, Juan X, Chen W. Quantifying randomness and complexity of a signal via maximum fuzzy membership difference entropy. Measurement 2021;174:109053.
  • [21] Zhang T, Han Z, Chen X, Chen W. Subbands and cumulative sum of subbands based nonlinear features enhance the performance of epileptic seizure detection. Biomed Signal Process Control 2021;69:102827.
  • [22] George ST, Subathra M, Sairamya NJ, et al. Classification of epileptic EEG signals using PSO based artificial neural network and tunable-Q wavelet transform. Biocybern Biomed Eng 2020;40(2):709-28.
  • [23] Sadiq MT, Akbari H, Rehman AU, et al. Exploiting feature selection and neural network techniques for identification of focal and nonfocal EEG signals in TQWT domain. J Healthcare Eng 2021;2021:6283900.
  • [24] Li C, Jacobs D, Hilton T, et al. Epileptogenic source imaging using cross-frequency coupled signals from scalp EEG. IEEE Trans Biomed Eng 2016;63(12):2607-18.
  • [25] Malladi R, Johnson DH, Kalamangalam G, et al. Mutual Information in frequency and its application to measure cross-frequency coupling in epilepsy. IEEE Trans Signal Process 2018;66(11):3008-23.
  • [26] Jacobs D, Hilton T, del Campo M, et al. Classification of preclinical seizure states using scalp EEG cross-frequency coupling features. IEEE Trans Biomed Eng 2018;65(11):2440-9.
  • [27] Bernardo D, Nariai H, Hussain SA, et al. Interictal scalp fast ripple occurrence and high frequency oscillation slow wave coupling in epileptic spasms. Clin Neurophysiol 2020;131 (7):1433-43.
  • [28] Gupta V, Pachori RB. Epileptic seizure identification using entropy of FBSE based EEG rhythms. Biomed Signal Process Control 2019;53:101569.
  • [29] Li M, Chen W, Xia M. GNMF-based quadratic feature extraction in SSTFT domain for epileptic EEG detection. Biomed Signal Process Control 2023;80(1):104274.
  • [30] Krishnan PT, Raj ANJ, Balasubramanian P, et al. Schizophrenia detection using multivariate empirical mode decomposition and entropy measures from multichannel EEG signal. Biocybern Biomed Eng 2020;40(3):1124-39.
  • [31] Tseng KK, Wang C, Xiao T, et al. Sliding large kernel of deep learning algorithm for mobile electrocardiogram diagnosis. Comput Electr Eng 2021;96:107521.
  • [32] Usman SM, Khalid S, Bashir Z. Epileptic seizure prediction using scalp electroencephalogram signals. Biocybern Biomed Eng 2021;41(1):211-20.
  • [33] Islam MS, Thapa K, Yang S-H. Epileptic-Net: an improved epileptic seizure detection system using dense convolutional block with attention network from EEG. Sensors 2022;22 (3):728.
  • [34] Deng J. Control problems of grey system. Syst Control Lett 1982;1:288-94.
  • [35] Liu S, Lin Y. Grey information: theory and practical applications. Berlin: Springer; 2006.
  • [36] Hu M, Liu W. Grey system theory in sustainable development research-a literature review (2011-2021). Grey Syst: Theory Appl 2022;12(4):785-803.
  • [37] Wei B. Parameter estimation strategies for separable grey system models with comparisons and applications. App Math Model 2023;116:32-44.
  • [38] Tuncer E, Bolat ED. Channel based epilepsy seizure type detection from electroencephalography (EEG) signals with machine learning techniques. Biocybern Biomed Eng 2022;42 (2):575-95.
  • [39] Samiee K, Kovacs P, Gabbouj M. Epileptic seizure classification of EEG time-series using rational discrete short time Fourier transform. IEEE Trans Biomed Eng 2014;62 (2):541-52.
  • [40] Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 2001;64(6):116-26.
  • [41] Goldberger AL, Amaral LAN, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000;101(23):e215-20.
  • [42] Shen M, Wen P, Song B, Li Y. An EEG based real-time epilepsy seizure detection approach using discrete wavelet transform and machine learning methods. Biomed Signal Process Control 2022;77:103820.
  • [43] Narin A. Detection of focal and non-focal epileptic seizure using continuous wavelet transform-based scalogram images and pre-trained deep neural networks. IRBM 2022;43 (1):22-31.
  • [44] Mallat S. A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 1989;11(7):674-93.
  • [45] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw 2014;69:46-61.
  • [46] Emary E, Zawbaa HM, Hassanien AE. Binary grey wolf optimization approaches for feature selection. Neurocomputing 2016;172:371-81.
  • [47] Nadimi-Shahraki MH, Taghian S, Mirjalili S. An improved grey wolf optimizer for solving engineering problems. Expert Syst Appl 2021;166:113917.
  • [48] Keller JM, Gray MR, Givens JA. A fuzzy k-nearest neighbor algorithm. IEEE Trans Syst Man Cybern 1985;4:580-5.
  • [49] Too J, Abdul Rahim A, Saad NM, et al. A new competitive binary grey wolf optimizer to solve the feature selection problem in EMG signals classification. Computers 2018;7(4):58.
  • [50] Too J, Abdul Rahim A. Opposition based competitive grey wolf optimizer for EMG feature selection. Evol Intel 2021;14:1691-705.
  • [51] Bhattacharyya A, Pachori RB. A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Trans Biomed Eng 2017;64 (9):2003-15.
  • [52] Hassan AR, Siuly S, Zhang Y. Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Comput Methods Programs Biomed 2016;137:247-59.
  • [53] Artameeyanant P, Sultornsanee S, Chamnongthai K. Electroencephalography-based feature extraction using complex network for automated epileptic seizure detection. Expert Syst 2017;34(2):e12211.
  • [54] Zhang T, Chen W. LMD based features for the automatic seizure detection of EEG signals using SVM. IEEE Trans Neural Syst Rehabil Eng 2018;25(8):1100-8.
  • [55] Yavuz E, Kasapbasi MC, Eyupoglu C, Yazici R. An epileptic seizure detection system based on cepstral analysis and generalized regression neural network. Biocybern Biomed Eng 2018;38:201-216s.
  • [56] Raghu B, Sriraam N, Temel Y, et al. Performance evaluation of DWT based sigmoid entropy in time and frequency domains for automated detection of epileptic seizures using SVM classifier. Comput Biol Med 2019;110:127-43.
  • [57] Tuncer T, Dogan S, Akbal E. A novel local senary pattern based epilepsy diagnosis system using EEG signals. Australas Phys Eng Sci Med 2019;42(4):939-48.
  • [58] Mamli S, Kalbkhani H. Gray-level co-occurrence matrix of Fourier synchro-squeezed transform for epileptic seizure detection. Biocybern Biomed Eng 2019;39:87-99.
  • [59] Zhang G, Yang L, Li B, et al. MNL-Network: A multi-scale nonlocal network for epilepsy detection from EEG signals. Front Neurosci 2020;14:870.
  • [60] Liu Y, Lin Y, Jia Z, et al. Representation based on ordinal patterns for seizure detection in EEG signals. Comput Biol Med 2020;126:104033.
  • [61] Malekzadeh A, Zare A, Yaghoobi M, et al. Epileptic seizures detection in EEG signals using fusion handcrafted and deep learning features. Sensors 2021;21(22):7710.
  • [62] Peng H, Lei C, Zheng S, et al. Automatic epileptic seizure detection via Stein kernel-based sparse representation. Comput Biol Med 2021;132:104338.
  • [63] Sukriti M, Chakraborty DM. Epilepsy seizure detection using kurtosis based VMD’s parameters selection and bandwidth features. Biomed Signal Process Control 2021;64:102255.
  • [64] Li M, Chen W. FFT-based deep feature learning method for EEG classification. Biomed Signal Process Control 2021;66:102492.
  • [65] Zhang S, Liu G, Xiao R, et al. A combination of statistical parameters for epileptic seizure detection and classification using VMD and NLTWSVM. Biocybern Biomed Eng 2022;42 (1):258-72.
  • [66] Sameer M, Gupta B. Time-frequency statistical features of delta band for detection of epileptic seizures. Wirel Pers Commun 2022;122:728489-72899.
  • [67] Huang Z, Ma Y, Wang R, Yuan B, Jiang R, Yang Q, et al. DSCNN-LSTMs: A lightweight and efficient model for epilepsy recognition. Brain Science 2022;12:1672.
  • [68] Christou V, Miltiadous A, Tsoulos I, et al. Evaluating the window size’s role in automatic EEG epilepsy detection. Sensors 2022;22(23):9233.
  • [69] Ilias L, Askounis D, Psarras J. Multimodal detection of epilepsy with deep neural networks. Expert Syst Appl 2023;21:119010.
  • [70] Zhang T, Chen W, Chen X. Identifying epileptic EEGs and congestive heart failure ECGs under unified framework of wavelet scattering transform, bidirectional weighted (2D)2 PCA and KELM. Biocybern Biomed Eng 2023;43:279-97.
  • [71] Yang S, Li B, Zhang Y, et al. Selection of features for patient-independent detection of seizure events using scalp EEG signals. Comput Biol Med 2020;119:103671.
  • [72] Wang X, Wang X, Liu W, et al. One dimensional convolutional neural networks for seizure onset detection using long-term scalp and intracranial EEG. Neurocomputing 2021;459:212-22.
  • [73] Yao X, Li X, Ye Q, et al. A robust deep learning approach for automatic classification of seizures against non-seizures. Biomed Signal Process Control 2021;64:102215.
  • [74] Cura OK, Akan A. Classification of epileptic EEG signals using synchrosqueezing transform and machine learning. Int J Neural Syst 2020;31(5):2150005.
  • [75] Ru Y, Li J, Chen H, Li J. Epilepsy detection based on variational mode decomposition and improved sample entropy. Comput Intell Neurosci 2022;2022:6180441.
  • [76] Guo Y, Jiangb X, Tao L. Epileptic seizure detection by cascading isolation forest-based anomaly screening and EasyEnsemble. IEEE Trans Neural Syst Rehabil Eng 2022. https://doi.org/10.1109/TNSRE.2022.3163503.
  • [77] Zhang Y, Yao S, Yang R, et al. Epileptic seizure detection based on bidirectional gated recurrent unit network. IEEE Trans Neural Syst Rehabil Eng 2022;30:135-45.
  • [78] Zhao Y, Chu D, He J, et al. Interactive local and global feature coupling for EEG-based epileptic seizure detection. Biomed Signal Process Control 2023;81:104441.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-30c933b1-dac6-449f-b461-f147579721fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.