Czasopismo
2018
|
Vol. 53, No. 4
|
127--139
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The ionospheric delay is the major current source of potential range delay for single-frequency GNSS users. Different ionospheric delay mitigation methods have been developed to mitigate the ionospheric delay effects for single-frequency users. The NeQuick is a quick-run ionospheric electron density model particularly designed for trans-ionospheric propagation applications developed at the Aeronomy and Radio propagation Laboratory of the Abdus Salam International Centre for Theoretical Physics (ICTP), Italy. NeQuick2 is the latest version of the NeQuick ionosphere electron density model. NeQuick model been used by the European Space Agency (ESA) European Geostationary Navigation Overlay Service (EGNOS) project for assessment analysis and has been adopted for single-frequency positioning applications in the frame work of the European satellite navigation system (Galileo). NeQuick2 model adopted modifications related to the modeling of the F1 layer peak electron density, height and thickness parameter. Also, a new formulation of the shape parameter k has been adopted. This paper presents a global study for the behavior of the modified NeQuick2 model. The zenith ionospheric range delay correction by the model has been assessed using the highly accurate IGS-Global Ionospheric Maps (IGS-GIMs) for two different-latitude stations (Aswan, Egypt) (low-latitude) (24.1° N) and (Helsinki, Finland) (high-latitude) (60.2° N). The study was carried out during current solar cycle-24 over three different months that each of them reflects a different state of solar activity. It can be concluded that NeQuick2 model globally presents overestimation for ionospheric delay for quiet and medium ionospheric activity states respectively, while the model presents underestimation for high activity state of the ionosphere layer.
Słowa kluczowe
Rocznik
Tom
Strony
127--139
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
autor
- College of Engineering, Aswan University, Egypt, ashraf_farah@aswu.edu.eg
Bibliografia
- Di Giovanni, G. and S. R. Radicella (1990). An Analytical model of the electron density profile in the ionosphere. Advanced Space Research, 10, No.11, 27-30.
- Ezquer R.G., L.A. Scidá, Y. Migoya Orué, B. Nava, M.A. Cabrera, C. Brunini (2018) .NeQuick 2 and IRI Plas VTEC predictions for low latitude and South American sector. Advances in Space Research, Volume 61, Issue 7, Pages 1803-1818.
- Hochegger, G., Nava, B., Radicella, S.M., Leitinger, R., (2000). A family of ionospheric models for different uses. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science 25 (4), 307-310.
- ICTP (2017). The Abdus Salam International Centre for Theoretical Physics (ICTP) (http://tict4d.ictp.it/) Accessed (15/3/2017).
- IGS (2018a). (2003-2004) IGS Annual Report. (ftp://ftp.igs.org/pub/resource/pubs/2003-2004_IGS_Annual_Report.pdf) (Accessed 15/1/2018).
- IGS (2018b). IGS-GIMs (International GNSS Service-Global Ionospheric Maps (IONEX format)) (ftp://cddis.gsfc.nasa.gov/gps/products/ionex/) (Accessed 15/1/2018).
- ITU (2003). (International Telecommunication Union) Ionospheric propagation data and prediction methods required for the design of satellite services and systems. Recommendation P. 531-7, Geneva.
- Klobuchar, J. A. (1982). Ionospheric Corrections for the Single Frequency User of the Global Positioning System. National Telesystems Conference, NTC’82. Systems for the Eighties. Galveston, Texas, USA (New York: IEEE, 1982).
- Kunches, J. M. and Klobuchar, J. A. (2001). Eye on The Ionosphere: GPS after SA. GPS Solutions 4(3), PP. 52-54.
- Nava B., P.Coı¨sson, S.M.Radicella (2008). A new version of the NeQuick ionosphere electron density model. Journal of Atmospheric and Solar-Terrestrial Physics 70 (2008) 1856-1862.
- NOAA-NGDC (2017). National Centers for Environmental Informations.(https://www.ngdc.noaa.gov/) Accessed (1/4/2017).
- Okoh Daniel, Sylvester Onwuneme, Gopi Seemala, Shuanggen Jin, Babatunde Rabiu, Bruno Nava, Jean Uwamahoro (2018). Assessment of the NeQuick-2 and IRI-Plas 2017 models using global and long-term GNSS measurements. Journal of Atmospheric and SolarTerrestrial Physics. Volume 170, May 2018, Pages 1-10.
- Perna L., K. Venkatesh, V.G. Pillat, M. Pezzopane, P.R. Fagundes, R.G. Ezquer, M.A. Cabrera (2018). Bottom side profiles for two close stations at the southern crest of the EIA: Differences and comparison with IRI-2012 and NeQuick2 for low and high solar activity. Advances in Space Research 61 (2018) pages 295-315.
- Radicella, S.M., B. Nava, P. Coisson and R. Leitinger (2003). A Flexible 3D Ionospheric Model for Satellite Navigation Applications. 2003-International Symposium on GPS/GNSS, Japan, PP. 305-310.
- Radicella, S.M., Leitinger, R., (2001). The evolution of the DGR approach to model electron density profiles. Advances in Space Research 27 (1), 35-40.
- Radicella, S.M., Zhang, M.L., (1995). The improved DGR analytical model of electron density height profile and total electron content in the ionosphere. Annali di Geofisica XXXVIII (1), 35-41.
- SIDC (2017). (http://sidc.oma.be/sunspot-data/1998,1999,2001). Accessed (1/4/2017).
- WDC (2017). World Data Center, Russia. (http://www.wdcb.ru/stp/data/geomagni.ind/kp_ap/) Accessed (1/4/2017)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-30bade35-e37c-4770-8e7c-4705919f1348