
COMPUTER SCIENCE AND MATHEMATICAL MODELLING 18 33−42 (2023)

 33

Selected techniques for source code obfuscation in scripting languages

M. MOHR

mateusz.mohr@student.wat.edu.pl

Military University of Technology, Faculty of Cybernetics
Kaliskiego Str. 2, 00-908 Warsaw, Poland

The article presents the most common techniques for obfuscating the source code of computer programs.
Obfuscation is defined and demonstrated through simple and easy-to-understand examples of code written in
scripting languages such as Python and JavaScript. Its applications are discussed, and it is shown how to easily
make the analysis of one’s programs more difficult.

Keywords: code obfuscation, scripting languages.

DOI: 10.5604/01.3001.0054.6335

1. Introduction

In the modern world, where an innumerable
amount of information is processed, it is
essential to pay attention to its security. In the
early stages of computer science development,
programmers could primarily focus on the
correct functioning of software. However, with
the advent of the Internet, many new threats and
challenges have emerged. One of these is the
protection of intellectual property, which is
particularly challenging in a world where news
about cyberattacks is no longer extraordinary.
One area that is gaining importance in the
context of software security is source code
obfuscation [1]. It is important to note, however,
that obfuscation can also be used unethically, by
hiding malicious code and making it difficult for
antivirus programs to detect it [2]. Therefore, it
is worth exploring this topic not only to secure
one's own code but also to be aware of how
these techniques can be used against ordinary
computer users with Internet access.

2. Obfucsation

Obfuscation was first defined in 1997 by
Christian Collberg in “A Taxonomy of
Obfuscating Transformations.” The author’s
definition is as follows [3]:
“Let P → P’ be a transformation of a source
program P. P → P is an obfuscating
transformation, if P and P’ have the same
observable behavior. More precisely, in order for
P → P’ to be a legal obfuscating transformation
the following conditions must hold:

• If P fails to terminate or terminates with an
error conditio, then P’ may or may not
terminate.

• Otherwisem P’ must terminate and produce
the same output as P.”

Obfuscation, in simple terms, can be described
as the process of deliberately making the source
code harder to understand without affecting the
outcome of its execution. This is achieved by
updating the working code using various
obfuscation techniques. However, the code
remains fully functional [4]. Obfuscation
techniques can modify individual method
instructions, but this does not affect the
program's output. Obfuscation consists of many
entirely different techniques that complement
each other. In this paper, the classification from
the publication “Techniques of Program Code
Obfuscation for Secure Software” by Marius
Popa was used, which has been extended by one
additional technique. In the mentioned article,
obfuscation is divided into 8 techniques [5]:
1. Name obfuscation;
2. Data obfuscation;
3. Code flow obfuscation;
4. Incremental obfuscation;
5. Intermediate code optimization;
6. Debug information obfuscation;
7. Watermarking;
8. Source code obfuscation.
The additional 9 technique is – String
encryption.

Mateusz Mohr, Selected techniques for source code obfuscation in scripting languages

 34

Four of the above techniques, which, due to the
publication’s focus on simple programs written
in scripting languages, will not be presented in
detail later in the publication, are briefly defined
below:
Incremental obfuscation [6] – this technique
involves ensuring the consistency of the code.
It guarantees that previously obfuscated names
(classes, methods, etc.) will remain consistent
with earlier obfuscated versions of the code.
In other words, this means that the code that was
previously obfuscated does not change between
versions, while new elements are subjected to
the obfuscation process.

Intermediate code optimization [5] – this
technique focuses on improving the efficiency
and size of the intermediate code. The technique
includes: removal of unused components (such
as methods, fields, and strings), constant
expression evaluation, assignment of static and
final attributes, and inlining of simple methods.

Debug information obfuscation [7] – debug
information is valuable because it allows you to
understand key aspects of a program's operation
and identify errors by decompiling and
recompiling the source code. The debug
information obfuscation technique involves
masking identifiable information by blocking
access to debug information altogether or by
changing its identifiers and line numbers.

Watermarking [8] – this technique involves
adding special sets of data to the code using
steganography techniques. This data is used for
identification purposes and can include
information about both the author (owner) of the
application and the client, in order to identify
whose copy of the software was made public.

3. Selected obfuscation techniques

The remaining techniques selected and
organized for a more detailed analysis are:
• Name obfuscation,
• Data obfuscation,
• Code flow Obfuscations,
• String encryption,
• Source code obfuscation.

To illustrate the obfuscation process using
the aforementioned techniques more accurately,
two programs written in scripting languages
were developed. Each of these techniques should
be examined individually; however, it is
important to remember that obfuscation typically
involves using many of them simultaneously.

The first program, prepared to demonstrate the
operation of these techniques, is a simple
calculator written in the Python programming
language:

Code 1 – Calculator
def add(x, y):
 return x + y

def subtract(x, y):
 return x - y

def multiply(x, y):
 return x * y

def divide(x, y):
 if y == 0:
 return "You can't divide by 0!"
 return x / y

def calculator():
 while True:
 print("Operations:\n1. Addition\n2.
Subtraction\n3. Multiplication\n4. Division\n5.
Exit ")
 choice = input("Select operation
(1/2/3/4/5): ")

 if choice == '5':
 break

 if choice in ('1', '2', '3', '4'):
 num1 = float(input("Enter the first
number: "))
 num2 = float(input("Enter the second
number: "))

 if choice == '1':
 print("Result: ", add(num1, num2))

 elif choice == '2':
 print("Result: ", subtract(num1, num2))

 elif choice == '3':
 print("Result: ", multiply(num1, num2))

 elif choice == '4':
 result = divide(num1, num2)
 print("Result: " if isinstance(result,
float) else "", result)
 else:
 print("Incorrect choice")

calculator()

The second example presented is code
responsible for changing an image on a website,
written in JavaScript. This program works with
a webpage created using HTML technology.

Code 2 – Website
<!DOCTYPE html>
<html>
<head>
 <title>Changing the picture</title>
</head>
<body>
 <img src="image1.png" class="changeable-
image" alt="Image">
 <script src="script.js"></script>
</body>
</html>

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 18 33−42 (2023)

 35

Code 3 – Script for changing an image on a website
const images =
document.querySelectorAll('.changeable-image');
const imageSources = ['image1.png',
'image2.png', 'image3.png'];

images.forEach(image => {
 image.addEventListener('click', function() {
 let currentImageIndex =
imageSources.indexOf(this.src.split('/').pop());
 let nextImageIndex = (currentImageIndex
+ 1) % imageSources.length;
 this.src = imageSources[nextImageIndex];
 });
});

The source code of both programs will

change with the application of each selected
obfuscation technique, and their operation
should become increasingly difficult to analyze.
Additionally, it is assumed that in the example of
changing an image on a website, the code
written in HTML remains unchanged.

Name obfuskation – is the simplest code
obfuscation technique to understand. It involves
changing the names of variables, functions,
classes, and other identifiers, which are usually
meaningful for better understanding the source
code, to names that are meaningless (convey no
information)[9]. After changing the identifiers'
names, it is mandatory to ensure the consistency
of the entire application by replacing the old
names with the new ones. It is worth mentioning
that this obfuscation technique also includes
method overloading, which allows a single
method name to refer to different functions
depending on the context of its invocation.
Method name obfuscation in this context
involves using the same obfuscated name
(identifier) for all overloaded method versions,
even though they have different signatures[5].
This means that instead of assigning a unique
name to each version of a method, all of them
have the same name. However, the programming
language can distinguish which version of the
method to call based on the passed arguments.
Unfortunately, in scripting languages, which are
statically typed (such as Python, JavaScript, or
Ruby), method overloading does not work well.
Below are examples of name obfuscation
in Python.

Code 4 – Calculating Sum
def calculateTheSum(a, b):
 result = a + b
 return result

sum = calculateTheSum(2, 3)
print(sum)

In the above program code, the calculateTheSum
function takes two arguments and returns their
sum. This code is clear and understandable even
to people who do not know how to program.

Code 5 – Calculating Sum After Applying
Name Obfuscation Technique

def s3wzY(tYx, xCb):
 P3wn = tYx + xCb
 return P3wn

rTb = s3wzY(2, 3)
print(rTb)

In the presented example, the variable names
have been changed to meaningless strings.
Although the program's functionality remains
unchanged, its comprehension has become more
difficult.

Code 6 – Finding Maximum Value
def findMax(numbers):
 maxNumber = numbers[0]
 for num in numbers:
 if num > maxNumber:
 maxNumber = num
 return maxNumber

print(findMax([1, 3, 2, 8, 5]))

In the presented example, the program that
searches for the largest number in an array is
well and clearly described using variable and
function names. This makes it easy to
understand without requiring code analysis. This
changes after the obfuscation shown below.

Code 7 – Finding Maximum Value After Applying
Name Obfuscation Technique

def vZ16p(b3P2):
 lNxX = b3P2[0]
 for uIQf in b3P2:
 if uIQf > lNxX:
 lNxX = uIQf
 return lNxX

print(vZ16p([1, 3, 2, 8, 5]))

Returning to the programs from the beginning of
the chapter, after applying the discussed
obfuscation technique, they might look as
follows:

Code 8 – Calculator After Applying
Name Obfuscation Technique

def xZ15(rTv, T47):
 return rTv + T47

def Ts3D(eiK, vZ4):
 return eiK - vZ4

def P1W9(P0d, vVZ):
 return P0d * vVZ

def Il1y(bJS, AI1):
 if AI1 == 0:
 return "You can't divide by 0!!"

Mateusz Mohr, Selected techniques for source code obfuscation in scripting languages

 36

 return bJS / AI1

def NwwC():
 while True:
 print("Operations:\n1. Addition\n2.
Subtraction\n3. Multiplication\n4. Division\n5.
Exit ")
 uM = input("Select operation
(1/2/3/4/5): ")

 if uM == '5':
 break

 if uM in ('1', '2', '3', '4'):
 Xx4 = float(input("Enter the first
number: "))
 Go2 = float(input("Enter the second
number: "))

 if uM == '1':
 print("Result: ", xZ15(Xx4,
Go2))

 elif uM == '2':
 print("Result: ", Ts3D(Xx4,
Go2))

 elif uM == '3':
 print("Result: ", P1W9(Xx4,
Go2))

 elif uM == '4':
 Er = Il1y(Xx4, Go2)
 print("Result: " if
isinstance(Er, float) else "", Er)
 else:
 print("Incorrect choice")

NwwC()

The above program has been changed by

renaming the calculator, add, subtract, multiply
and divide functions to the meaningless strings.
In a similar way, the names of the variables
num1, num2, choice and result were changed to
Xx4, Go2 and uM and Er, respectively. In each
of the functions performing arithmetic
calculations, the names of the x and y variables
have been changed to random strings of
characters.

The script for changing photos on the
website was changed using the same technique
as follows:

Code 9 – Script for Changing an Image on a Website

After Applying Name Obfuscation Technique
const myE4 =
document.querySelectorAll('.changeable-image');
const Af13 = ['image1.png', 'image2.png',
'image3.png'];

myE4.forEach(e3r => {
 e3r.addEventListener('click', function() {
 let hji =
Af13.indexOf(this.src.split('/').pop());
 let W6r = (hji + 1) % Af13.length;
 this.src = Af13[W6r];
 });
});

Once again, this program becomes more
difficult to understand. However, for the sake of
your own intellectual rights, it is also worth
turning to other obfuscation techniques.

Data obfuscation [10] – obfuscation technique
that involves modifying the data structure in
software. Data obfuscation can be divided into
three subcategories:
Data aggregation [10] involves changes in data
grouping through: merging two or more scalar
variables into a single composite variable (e.g.,
in a structure or class), inheriting interfaces to
create complex class hierarchies (adding
additional, unnecessary classes or methods,
increasing code complexity, but also creating
dummy classes that are not used at all in the
program), and reorganizing data in arrays (e.g.,
by splitting one array into several smaller ones
or vice versa, or by converting one-dimensional
arrays into multidimensional ones and vice
versa).

Code 10 – Adding Scalar Variables
num1 = 10
num2 = 20
sum = num1 + num2
print(sum)

Code 11 – Adding Variables in an Array

data = [10, 20]
sum = data[0] + data[1]
print(sum)

By merging two scalar variables into

a single composite variable (a tuple), the data
structure of the program was changed.

Code 12 – Class Performing Simple Arithmetic
Operations

class Calculator:
 def add(self, a, b):
 return a + b

 def subtract(self, a, b):
 return a - b

Code 13 – Several Classes Performing Arithmetic

Operations
class BasicMath:
 def add(self, a, b):
 return a + b

class AdvancedMath(BasicMath):
 def subtract(self, a, b):
 return a - b

class Unused:
 def do_nothing(self):
 pass

calc = AdvancedMath()

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 18 33−42 (2023)

 37

After adding the class hierarchy, the code
became more complex. Additionally, the
“Unused” class was introduced as an extra
element, not contributing to the actual
functionality of the application.

Code 14 – One-Dimensional Array Storing Values
array = [1, 2, 3, 4, 5]

Code 15 – Two-Dimensional Array Storing Values
array = [[1, 2], [3, 4], [5]]

Changing the array structure from one-
dimensional to multidimensional results in the
need for multi-level indexing, which can make
data understanding and manipulation more
difficult.

Data Storage and Encoding [10] affects the
way data is stored and interpreted through:
converting local variables into global ones,
changing simple variable value declarations into
mathematical or logical expressions, and, as with
data aggregation, inheriting interfaces to create
complex class hierarchies and reorganizing data
in arrays.

Code 16 – Using a Local Variable as a Counter Inside

a For Loop
def increment():
 counter = 0
 for i in range(10):
 counter += 1
 return counter

print(increment())

Code 17 – Using a Global Variable as a Counter

Inside a For Loop
counter = 0

def increment():
 global counter
 for i in range(10):
 counter += 1

increment()
print(counter)

Converting the local variable counter into
a global one can introduce confusion about the
sources of changes to its value, especially in
larger programs where many functions may
modify global variables.

Code 18 – Simple Variable Declaration
number = 10

Code 19 – Variable Declaration Using a

Mathematical Expression
number = (100 - 90) * (2 ** 1) + (6 - 1)

The use of a mathematical expression makes it
difficult to quickly understand the code during
analysis without using additional tools.

Data Ordering [10] involves modifying the
order of data declarations in a program by:
changing the order in which methods are
declared, randomizing the order of method
parameters, using a mapping function, and
randomizing the order of variable declarations in
classes.

Code 20 – Calculator with Logical Order of Methods
class Calculator:
 def __init__(self, value=0):
 self.value = value

 def add(self, number):
 self.value += number

 def subtract(self, number):
 self.value -= number

 def get_value(self):
 return self.value

calc = Calculator()
calc.add(10)
calc.subtract(5)
print(calc.get_value())

Code 21 – Calculator with Changed Order of

Methods
class Calculator:
 def subtract(self, number):
 self.value -= number

 def get_value(self):
 return self.value

 def __init__(self, value=0):
 self.value = value

 def add(self, number):
 self.value += number

calc = Calculator()
calc.add(10)
calc.subtract(5)
print(calc.get_value())

The methods were rearranged in a non-intuitive
order, which can cause confusion during code
analysis.

Mateusz Mohr, Selected techniques for source code obfuscation in scripting languages

 38

Code 22 – Method with Logical Order of Parameters
def process_data(data, flag):
 if flag == 'special':
 return data * 2
 return data + 10

print(process_data(5, 'special'))

Code 23 – Method with Changed Order of

Parameters
def process_data(flag, data):
 if flag == 'special':
 return data * 2
 return data + 10

print(process_data('special', 5))

Changing the order of parameters using
randomization can make functions difficult to
understand, especially when a large project has
many functions with a lot of parameters.

Code 24 – Variable Declarations in a Class in Logical

Order
class DataHolder:
 def __init__(self):
 self.data = []
 self.size = 0

 def add_data(self, value):
 self.data.append(value)
 self.size += 1

holder = DataHolder()
holder.add_data(10)
print(holder.size)

Code 25 – Variable Declarations in a Class in

Changed Order
class DataHolder:
 def __init__(self):
 self.size = 0
 self.data = []

 def add_data(self, value):
 self.data.append(value)
 self.size += 1

holder = DataHolder()
holder.add_data(10)
print(holder.size)

Furthermore, changing the order of variable
declarations in a class can impact the difficulty
of understanding the code.

Code 26 – Calculator After Applying Data
Obfuscation Technique

gS = 2

def xZ15(rTv):
 return rTv[0] + rTv[1]

def Ts3D(eiK, vZ4):
 return eiK - vZ4 * (gS - 1)

def NwwC():
 while True:
 print("Operations:\n1. Addition\n2.
Subtraction\n3. Multiplication\n4. Division\n5.

Exit ")
 uM = input("Select operation
(1/2/3/4/5): ")

 if uM == '5':
 break

 if uM in ('1', '2', '3', '4'):
 Xx4 = float(input("Enter the first
number: "))
 Go2 = float(input("Enter the second
number: "))

 if uM == '1':
 mM3 = (Xx4, Go2)
 print("Result: ", xZ15(mM3))

 elif uM == '2':
 print("Result: ", Ts3D(Xx4,
Go2))

 elif uM == '3':
 mp9 = (Go2, Xx4)
 print("Result: ", P1W9(mp9))

 elif uM == '4':
 Ep2 = 1
 TiX = Go2 * (Xx4 * gS - 2 *
Xx4) * 14 + Ep2 * Go2
 Er = Il1y(Xx4, TiX)
 print("Result: " if
isinstance(Er, float) else "", Er)
 else:
 print("Incorrect choice")

def P1W9(P0d):
 return P0d[0] * P0d[1]

def Il1y(bJS, AI1):
 if AI1 == 0:
 return "You can't divide by 0!!"
 return bJS / AI1

NwwC()

In the calculator from the beginning of the
chapter, besides using the name obfuscation
technique, the data obfuscation technique was
also applied. Thus, in the functions xZ15 and
P1W9, data structures containing both values
were used instead of two separate parameters.
Moreover, the program includes mathematical
expressions involving an additional global
variable, gS. The final changes introduced as
part of the technique were altering the order of
method and parameter declarations.

Code 27 – Script for Changing an Image
on a Website After Applying Data Obfuscation

Technique
const myE4 =
document.querySelectorAll('.changeable-image');
const Af13 = ['image3.png', 'image2.png',
'image1.png'];

myE4.forEach(image => {
 image.addEventListener('click', function()
{
 let hji =
Af13.indexOf(this.src.split('/').pop());
 let W6r = (hji - 1 + Af13.length) %
Af13.length;

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 18 33−42 (2023)

 39

 this.src = Af13[W6r];
 });
});

In the script for changing images, using the data
obfuscation technique, the order of images in the
array Af13 was changed and the expression W6r
was complicated in such a way that the images
are displayed on the page in their original order.

Code flow obfuscation (also known as Control
flow obfuscation) is a technique of intentionally
compiling the structure of a program to make it
more difficult to analyze. It uses methods such
as changing the order of operations, introducing
intermediate jumps, using branching functions
and changing the order of code blocks without
affecting functionality. For example, the if-else
condition can be replaced with a switch
statement [11]. This technique also uses dead
code, which, despite appearing in the program
code, is never executed [7].

Code 28 – Checking for Even Numbers
number = int(input("Enter a number: "))
if number % 2 == 0:
 print(f"{number} is even.")
else:
 print(f"{number} is odd.")

Code 29 – Checking for Even Numbers After
Applying Code Flow Obfuscation Technique

def is_even(number):
 try:
 if number % 2:
 raise ValueError("Number is
odd")
 else:
 return True
 except ValueError as e:
 print(e)
 return False

number = int(input("Enter a number: "))
result = is_even(number)
if result:
 print(f"{number} is even.")
else:
 _unused_var = None
 print(f"{number} is odd.")

In the above program that checks the parity of an
entered number, the direct check for evenness
was replaced with a function, an unnecessary
and unused variable was added, and the if-else
statement was unusually replaced with
a try-except block, thereby controlling the
program flow.

Code 30 – Calculator After Applying Code Flow
Obfuscation Technique

gS = 2

def xZ15(rTv):
 return rTv[0] + rTv[1]

def Ts3D(eiK, vZ4):
 return eiK - vZ4 * (gS - 1)

def iC5(Ad):
 return Ad[0] * gS - Ad[1]

def NwwC():
 op = {
 '1': lambda x, y: iC5((x, y + gS)),
 '2': Ts3D,
 '3': lambda x, y: iC5((y, x + gS)),
 '4': lambda x, y: Il1y(x, y * (x * gS -
2 * x) * 14 + 1 * y)
 }

 while True:
 print("Operations:\n1. Addition\n2.
Subtraction\n3. Multiplication\n4. Division\n5.
Exit ")
 uM = input("Select operation
(1/2/3/4/5): ")

 if uM == '5':
 break

 if uM in op:
 Xx4 = float(input("Enter the first
number: "))
 Go2 = float(input("Enter the second
number: "))

 if uM == '1':
 mM3 = (Xx4, Go2)
 print("Result: ", xZ15(mM3))

 elif uM == '2':
 print("Result: ", op[uM](Xx4,
Go2))

 elif uM == '3':
 mp9 = (Go2, Xx4)
 print("Result: ", P1W9(mp9))

 elif uM == '4':
 Ep2 = 1
 TiX = Go2 * (Xx4 * gS - 2 *
Xx4) * 14 + Ep2 * Go2
 Er = Il1y(Xx4, TiX)
 print("Result: " if
isinstance(Er, float) else "", Er)
 else:
 print("Incorrect choice")

def P1W9(P0d):
 return P0d[0] * P0d[1]

def Il1y(bJS, AI1):
 if AI1 == 0:
 return "You can't divide by 0!!"
 return bJS / AI1

NwwC()

In the initially prepared calculator program,
additional changes were introduced by adding
the function iC5, which is an example of dead
code. Mapping instructions were also added,
which can replace if-else statements. However,

Mateusz Mohr, Selected techniques for source code obfuscation in scripting languages

 40

in the proposed example, most of the mapped
operations will never be executed, further
complicating the program's analysis.

Code 31 – Script for Changing an Image on
a Website After Applying Code Flow Obfuscation

Technique
const myE4 =
document.querySelectorAll('.changeable-image');
const Af13 = ['image3.png', 'image2.png',
'image1.png'];
let b5 = false

myE4.forEach(image => {
 image.addEventListener('click', function()
{
 let hji =
Af13.indexOf(this.src.split('/').pop());
 let W6r = (hji - 1 + Af13.length) %
Af13.length;
 this.src = Af13[W6r];

 if (b5) {
 let uVrs = Math.sqrt(-1);
 let aUd = uVrs + 100;
 aUd = aUd * uVrs;
 b5 = !b5;
 }
 });
});

Źródło: badania własne

A variable b5 and a conditional statement that
will never be executed were added to the above
code.

String encryption[12] – this technique involves
encrypting strings of characters in the program
code in order to make it more difficult to analyze
and search for specific code fragments.
Encrypted strings of characters stored in the
program code are decrypted when needed.

Code 32 – Program Printing “Hello World”
message = "Hello World"
print(message)

Code 33 – Program Printing “Hello World” After

Applying String Encryption Technique
import base64

def decrypt_string(encoded_text):
 decoded_bytes =
base64.b64decode(encoded_text.encode('utf-
8'))
 return str(decoded_bytes, 'utf-8')

message = "SGVsbG8gV29ybGQ="
print(decrypt_string(message))

In the above program, Base64 encoding was
used to hide the meaning of the printed text.
However, when the program is executed, this

text is readable and does not differ from the
original version of the program.

Code 34 – Calculator After Applying String
Encryption Technique

gS = 2

def xZ15(rTv):
 return rTv[0] + rTv[1]

def Ts3D(eiK, vZ4):
 return eiK - vZ4 * (gS - 1)

def iC5(Ad):
 return Ad[0] * gS - Ad[1]

def NwwC():
 op = {
 '1': lambda x, y: iC5((x, y + gS)),
 '2': Ts3D,
 '3': lambda x, y: iC5((y, x + gS)),
 '4': lambda x, y: Il1y(x, y * (x * gS -
2 * x) * 14 + 1 * y)
 }

 while True:
 print(''.join(chr(code) for code in
[79, 112, 101, 114, 97, 116, 105, 111, 110,
115, 58, 10, 49, 46, 32, 65, 100, 100, 105,
116, 105, 111, 110, 10, 50, 46, 32, 83, 117,
98, 116, 114, 97, 99, 116, 105, 111, 110, 10,
51, 46, 32, 77, 117, 108, 116, 105, 112, 108,
105, 99, 97, 116, 105, 111, 110, 10, 52, 46,
32, 68, 105, 118, 105, 115, 105, 111, 110, 10,
53, 46, 32, 69, 120, 105, 116, 32]))
 uM = input(''.join(chr(code) for code
in [83, 101, 108, 101, 99, 116, 32, 111, 112,
101, 114, 97, 116, 105, 111, 110, 32, 40, 49,
47, 50, 47, 51, 47, 52, 47, 53, 41, 58, 32]))

 if uM == '5':
 break

 if uM in op:
 Xx4 = float(input(''.join(chr(code)
for code in [69, 110, 116, 101, 114, 32, 116,
104, 101, 32, 102, 105, 114, 115, 116, 32, 110,
117, 109, 98, 101, 114, 58, 32])))
 Go2 = float(input(''.join(chr(code)
for code in [69, 110, 116, 101, 114, 32, 116,
104, 101, 32, 115, 101, 99, 111, 110, 100, 32,
110, 117, 109, 98, 101, 114, 58, 32])))

 if uM == '1':
 mM3 = (Xx4, Go2)
 print(''.join(chr(code) for
code in [82, 101, 115, 117, 108, 116, 58, 32]),
xZ15(mM3))

 elif uM == '2':
 print(''.join(chr(code) for
code in [82, 101, 115, 117, 108, 116, 58, 32]),
op[uM](Xx4, Go2))

 elif uM == '3':
 mp9 = (Go2, Xx4)
 print(''.join(chr(code) for
code in [82, 101, 115, 117, 108, 116, 58, 32]),
P1W9(mp9))

 elif uM == '4':
 Ep2 = 1
 TiX = Go2 * (Xx4 * gS - 2 *
Xx4) * 14 + Ep2 * Go2
 Er = Il1y(Xx4, TiX)

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 18 33−42 (2023)

 41

 print(''.join(chr(code) for
code in [82, 101, 115, 117, 108, 116, 58, 32])
if isinstance(Er, float) else "", Er)
 else:
 print(''.join(chr(code) for code in
[73, 110, 99, 111, 114, 114, 101, 99, 116, 32,
99, 104, 111, 105, 99, 101]))

def P1W9(P0d):
 return P0d[0] * P0d[1]

def Il1y(bJS, AI1):
 if AI1 == 0:
 return ''.join(chr(code) for code in
[89, 111, 117, 32, 99, 97, 110, 39, 116, 32,
100, 105, 118, 105, 100, 101, 32, 98, 121, 32,
48, 33]
)
 return bJS / AI1

NwwC()

Code 35 – Script for Changing an Image on
a Website After Applying String Encryption

Technique
const myE4 =
document.querySelectorAll(String.fromCharCode(..
.[46, 99, 104, 97, 110, 103, 101, 97, 98, 108,
101, 45, 105, 109, 97, 103, 101]));
const Af13 = [String.fromCharCode(...[105, 109,
97, 103, 101, 51, 46, 112, 110, 103]),
String.fromCharCode(...[105, 109, 97, 103, 101,
50, 46, 112, 110, 103]),
String.fromCharCode(...[105, 109, 97, 103, 101,
49, 46, 112, 110, 103])];
let b5 = false

myE4.forEach(image => {

image.addEventListener(String.fromCharCode(...[9
9, 108, 105, 99, 107]), function() {
 let hji =
Af13.indexOf(this.src.split('/').pop());
 let W6r = (hji - 1 + Af13.length) %
Af13.length;
 this.src = Af13[W6r];

 if (b5) {
 let uVrs = Math.sqrt(-1);
 let aUd = uVrs + 100;
 aUd = aUd * uVrs;
 b5 = !b5;
 }
 });
});

In both of the above source codes, strings have
been replaced with arrays of ASCII characters.

Source code obfuscation – is a technique that
involves hiding the meaning of the code by
removing comments and changing identifier
names before it is handed over for maintenance
or testing[5]. The code proposed at the
beginning has no comments, and its identifier
names have already been changed in the
obfuscation process.

4. Conclusion

Code obfuscation is a relatively simple process
that you can use to protect your intellectual
property. It should be remembered that this
process can always be reversed. However,
analyzing obfuscated code is more difficult and
resource-consuming than analyzing
non-obfuscated code. The easiest way to prove
this is to look again at the program codes
numbered 1 and 3, then 34 and 35.

5. Bibliography

[1] Kovacevic A., “What is Code Obfuscation?

How to Disguise Your Code to Make it
More Secure”, #CYBERSECURITY,
20.11.2020.

[2] Król K., „Wpływ dekompresji kodu
źródłowego (unminify process) na
wydajność aplikacji mapowej”, [online,
29.10.2020].

[3] Collberg Ch., Thomborson C., Low D.,
“A Taxonomy of Obfuscating
Transformations”, [online, 01.1997].

[4] Brzozowski M., Yarmolik V.N.,
„Obfuskacja – narzędzie zabezpieczające
prawa autorskie do projektów
sprzętowych”, Pak, Vol. 54(8), 477–479
(2008).

[5] Popa M., “Techniques of Program Code
Obfuscation for Secure Software”, Journal
of Mobile, Embedded and Distributed
Systems, Vol. 3, No. 4 (2011).

[6] allatori.com, “Incremental Obfuscation”,
(dostęp: 19.05.2024)

[7] Govindraj B., “Code Obfuscation:
A Comprehensive Guide Against Reverse-
Engineering Attempts”, [online,
05.06.2023].

[8] allatori.com, “Watermarking”, (dostęp:
19.05.2024).

[9] Kubiak S., „Obfuskacja kodu”, [online,
07.06.2019].

[10] Faruki P., et al., “Android Code Protection
via Obfuscation Techniques: Past, Present
and Future Directions”, arXiv1611.10231
(2016).

[11] Brook Ch., “What is Code Obfuscation &
How Does It Work?” [online, 02.05.2024].

[12] Brook Ch., “What is Code Encryption and
How Does it Work?” [online, 26.06.2023].

Mateusz Mohr, Selected techniques for source code obfuscation in scripting languages

 42

Wybrane techniki obfuskacji kodu źródłowego w językach skryptowych

M. MOHR

Artykuł przedstawia najpopularniejsze techniki zaciemniania kodu źródłowego programów komputerowych.
Obfuskacja jest zdefiniowana i przedstawiona na prostych i łatwych do zrozumienia przykładach kodu
napisanego w językach skryptowych, takich jak Python i JavaScript. Omówiono jej zastosowania i pokazano, jak
w prosty sposób utrudnić analizę własnych programów.

Słowa kluczowe: obfuskacja kodu, języki skryptowe.

