Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 43, no. 1 | 1--16
Tytuł artykułu

COVID-19 detection on chest X-ray images using Homomorphic Transformation and VGG inspired deep convolutional neural network

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
COVID-19 had caused the whole world to come to a standstill. The current detection methods are time consuming as well as costly. Using Chest X-rays (CXRs) is a solution to this problem, however, manual examination of CXRs is a cumbersome and difficult process needing specialization in the domain. Most of existing methods used for this application involve the usage of pretrained models such as VGG19, ResNet, DenseNet, Xception, and EfficeintNet which were trained on RGB image datasets. X-rays are fundamentally single channel images, hence using RGB trained model is not appropriate since it increases the operations by involving three channels instead of one. A way of using pretrained model for grayscale images is by replicating the one channel image data to three channel which introduces redundancy and another way is by altering the input layer of pretrained model to take in one channel image data, which comprises the weights in the forward layers that were trained on three channel images which weakens the use of pre-trained weights in a transfer learning approach. A novel approach for identification of COVID-19 using CXRs, Contrast Limited Adaptive Histogram Equalization (CLAHE) along with Homomorphic Transformation Filter which is used to process the pixel data in images and extract features from the CXRs is suggested in this paper. These processed images are then provided as input to a VGG inspired deep Convolutional Neural Network (CNN) model which takes one channel image data as input (grayscale images) to categorize CXRs into three class labels, namely, No-Findings, COVID-19, and Pneumonia. Evaluation of the suggested model is done with the help of two publicly available datasets; one to obtain COVID-19 and No-Finding images and the other to obtain Pneumonia CXRs. The dataset comprises 6750 images in total; 2250 images for each class. Results obtained show that the model has achieved 96.56% for multi-class classification and 98.06% accuracy for binary classification using 5-fold stratified cross validation (CV) method. This result is competitive and up to the mark when compared with the performance shown by existing approaches for COVID-19 classification.
Wydawca

Rocznik
Strony
1--16
Opis fizyczny
Bibliogr. 64 poz., rys., tab., wykr.
Twórcy
  • School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
  • School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
autor
  • School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
  • Centre for Cyber Physical Systems, School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu 600127, India, manas.iter144@gmail.com
Bibliografia
  • [1] Shi Y, Wang G, Cai X-P, Deng J-W, Zheng L, Zhu H-H, et al. An overview of COVID-19. J Zhejiang Univ Sci B 2020;21:343-60. https://doi.org/10.1631/jzus.B2000083.
  • [2] Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 and Multiorgan Response. Curr Probl Cardiol 2020;45 (8):100618.
  • [3] Bader F, Manla Y, Atallah B, Starling RC. Heart failure and COVID-19. Heart Fail Rev 2021;26:1-10. https://doi.org/ 10.1007/s10741-020-10008-2.
  • [4] Raza A, Estepa A, Chan V, Jafar MS. Acute Renal Failure in Critically Ill COVID-19 Patients With a Focus on the Role of Renal Replacement Therapy: A Review of What We Know So Far. Cureus 2020;12. https://doi.org/10.7759/cureus.8429.
  • [5] Feng G, Zheng KI, Yan Q-Q, Rios RS, Targher G, Byrne CD, et al. COVID-19 and Liver Dysfunction: Current Insights and Emergent Therapeutic Strategies. J Clin Transl Hepatol 2020;8 (1):1-7.
  • [6] Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 2020;395:1607-8. https://doi.org/ 10.1016/S0140-6736(20)31094-1.
  • [7] Mokhtari T, Hassani F, Ghaffari N, Ebrahimi B, Yarahmadi A, Hassanzadeh G. COVID-19 and multiorgan failure: A narrative review on potential mechanisms. J Mol Histol 2020;51:613-28. https://doi.org/10.1007/s10735-020-09915-3.
  • [8] Yang W, Yan F. Patients with RT-PCR-confirmed COVID-19 and Normal Chest CT. Radiology 2020;295:E3-E. https://doi.org/ 10.1148/radiol.2020200702.
  • [9] Abdulkareem M, Petersen SE. The Promise of AI in Detection, Diagnosis, and Epidemiology for Combating COVID-19: Beyond the Hype. Front Artif Intell 2021;4. https://doi.org/ 10.3389/frai.2021.652669 652669.
  • [10] Jain DK, Singh T, Saurabh P, Bisen D, Sahu N, Mishra J, et al. Deep Learning-Aided Automated Pneumonia Detection and Classification Using CXR Scans. Comput Intell Neurosci 2022;2022:e7474304. https://doi.org/10.1155/2022/7474304.
  • [11] Singh T, Saurabh P, Bisen D, Kane L, Pathak M, Sinha GR. FtlCoV19: A Transfer Learning Approach to Detect COVID-19. Comput Intell Neurosci 2022;2022:e1953992. https://doi.org/ 10.1155/2022/1953992.
  • [12] Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol 2017;10:257-73. https://doi.org/10.1007/ s12194-017-0406-5.
  • [13] Chen X-W, Lin X. Big Data Deep Learning: Challenges and Perspectives. IEEE Access 2014;2:514-25. https://doi.org/ 10.1109/ACCESS.2014.2325029.
  • [14] Aslan MF, Sabanci K, Durdu A, Unlersen MF. COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization. Comput Biol Med 2022;142. https://doi.org/10.1016/j.compbiomed.2022.105244 105244.
  • [15] Alakus TB, Turkoglu I. Comparison of deep learning approaches to predict COVID-19 infection. Chaos Solitons Fractals 2020;140. https://doi.org/10.1016/j.chaos.2020.110120 110120.
  • [16] Ibrahim DM, Elshennawy NM, Sarhan AM. Deep-chest: Multiclassification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Comput Biol Med 2021;132. https://doi.org/10.1016/j.compbiomed.2021.104348 104348.
  • [17] Ni Q, Sun ZY, Qi Li, Chen W, Yang Yi, Wang Li, et al. A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. Eur Radiol 2020;30(12):6517-27.
  • [18] Ibrahim AU, Ozsoz M, Serte S, Al-Turjman F, Yakoi PS. Pneumonia Classification Using Deep Learning from Chest Xray Images During COVID-19. Cogn Comput 2021. https://doi. org/10.1007/s12559-020-09787-5.
  • [19] Mamalakis M, Swift AJ, Vorselaars B, Ray S, Weeks S, Ding W, et al. DenResCov-19: A deep transfer learning network for robust automatic classification of COVID-19, pneumonia, and tuberculosis from X-rays. Comput Med Imaging Graph 2021;94:102008.
  • [20] Murugan R, Goel T, Mirjalili S, Chakrabartty DK. WOANet: Whale optimized deep neural network for the classification of COVID-19 from radiography images. Biocybern Biomed Eng 2021;41:1702-18. https://doi.org/10.1016/j.bbe.2021.10.004.
  • [21] Gouda W, Almurafeh M, Humayun M, Jhanjhi NZ. Detection of COVID-19 Based on Chest X-rays Using Deep Learning. Healthcare 2022;10:343. https://doi.org/10.3390/ healthcare10020343.
  • [22] Gour M, Jain S. Automated COVID-19 detection from X-ray and CT images with stacked ensemble convolutional neural network. Biocybern Biomed Eng 2022;42:27-41. https://doi. org/10.1016/j.bbe.2021.12.001.
  • [23] Gour M, Jain S. Uncertainty-aware convolutional neural network for COVID-19 X-ray images classification. Comput Biol Med 2022;140. https://doi.org/10.1016/ j.compbiomed.2021.105047 105047.
  • [24] Xie Y, Richmond D. Pre-training on Grayscale ImageNet Improves Medical Image Classification. In: Leal-Taixé L, Roth S, editors. Comput. Vis. – ECCV 2018 Workshop, vol. 11134, Cham: Springer International Publishing; 2019, p. 476-84. .https://doi.org/10.1007/978-3-030-11024-6_37.
  • [25] Oppenheim A, Schafer R, Stockham T. Nonlinear filtering of multiplied and convolved signals. IEEE Trans Audio Electroacoustics 1968;16:437-66. https://doi.org/10.1109/ TAU.1968.1161990.
  • [26] Madisetti VK, editor. The Digital Signal Processing Handbook: Digital Signal Processing Fundamentals. Boca Raton: CRC Press; 2017. https://doi.org/10.1201/9781420046076.
  • [27] Chowdhury MEH, Rahman T, Khandakar A, Mazhar R, Kadir MA, Mahbub ZB, et al. Can AI help in screening Viral and COVID-19 pneumonia? IEEE Access 2020;8:132665-76.
  • [28] Rahman T, Khandakar A, Qiblawey Y, Tahir A, Kiranyaz S, Abul Kashem SB, et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput Biol Med 2021;132:104319.
  • [29] Kermany D, Zhang K, Goldbaum M. Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification 2018;2. https://doi.org/10.17632/ rscbjbr9sj.2.
  • [30] Joshi RC, Yadav S, Pathak VK, Malhotra HS, Khokhar HVS, Parihar A, et al. A deep learning-based COVID-19 automatic diagnostic framework using chest X-ray images. Biocybern Biomed Eng 2021;41(1):239-54.
  • [31] Siracusano G, La Corte A, Gaeta M, Cicero G, Chiappini M, Finocchio G. Pipeline for Advanced Contrast Enhancement (PACE) of Chest X-ray in Evaluating COVID-19 Patients by Combining Bidimensional Empirical Mode Decomposition and Contrast Limited Adaptive Histogram Equalization (CLAHE). Sustainability 2020;12:8573. https://doi.org/ 10.3390/su12208573.
  • [32] Victor Ikechukwu A, Murali S, Deepu R, Shivamurthy RC. ResNet-50 vs VGG-19 vs training from scratch: A comparative analysis of the segmentation and classification of Pneumonia from chest X-ray images. Glob Transit Proc 2021;2:375-81. https://doi.org/10.1016/j.gltp.2021.08.027.
  • [33] Bashar A, Latif G, Ben Brahim G, Mohammad N, Alghazo J. COVID-19 Pneumonia Detection Using Optimized Deep Learning Techniques. Diagn Basel Switz 2021;11:1972. https:// doi.org/10.3390/diagnostics11111972.
  • [34] Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Rajendra AU. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med 2020;121. https://doi.org/10.1016/j.compbiomed.2020.103792 103792.
  • [35] Gonzalez RC, Woods RE. Digital image processing. New York, NY: Pearson; 2018.
  • [36] Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition 2015. https://doi.org/10.48550/arXiv.1409.1556.
  • [37] Namani S, Akkapeddi L, Bantu S. Performance Analysis of VGG-19 Deep Learning Model for COVID-19 Detection, 2022. https://doi.org/10.23919/INDIACom54597.2022.9763177.
  • [38] Hamwi WA, Almustafa MM. Development and integration of VGG and dense transfer-learning systems supported with diverse lung images for discovery of the Coronavirus identity. Inform Med Unlocked 2022;32. https://doi.org/10.1016/j.imu.2022.101004 101004.
  • [39] Abraham B, Nair MS. Computer-aided detection of COVID-19 from X-ray images using multi-CNN and Bayesnet classifier. Biocybern Biomed Eng 2020;40:1436-45. https://doi.org/ 10.1016/j.bbe.2020.08.005.
  • [40] Perumal V, Narayanan V, Rajasekar SJS. Prediction of COVID Criticality Score with Laboratory, Clinical and CT Images using Hybrid Regression Models. Comput Methods Programs Biomed 2021;209. https://doi.org/10.1016/j.cmpb.2021.106336 106336.
  • [41] Perumal V, Narayanan V, Rajasekar SJS. Detection of COVID19 using CXR and CT images using Transfer Learning and Haralick features. Appl Intell Dordr Neth 2021;51:341-58. https://doi.org/10.1007/s10489-020-01831-z.
  • [42] Nandini GS, Kumar APS. K C. Dropout technique for image classification based on extreme learning machine. Glob Transit Proc 2021;2:111-6. https://doi.org/10.1016/j.gltp.2021.01.015.
  • [43] Prusty MR, Jayanthi T, Velusamy K. Weighted-SMOTE: A modification to SMOTE for event classification in sodium cooled fast reactors. Prog Nucl Energy 2017;100:355-64. https://doi.org/10.1016/j.pnucene.2017.07.015.
  • [44] Mishra NK, Singh P, Joshi SD. Automated detection of COVID19 from CT scan using convolutional neural network. Biocybern Biomed Eng 2021;41:572-88. https://doi.org/ 10.1016/j.bbe.2021.04.006.
  • [45] Baltazar LR, Manzanillo MG, Gaudillo J, Viray ED, Domingo M, Tiangco B, et al. Artificial intelligence on COVID-19 pneumonia detection using chest xray images. PLoS One 2021;16(10):e0257884.
  • [46] Fang L, Wang X. COVID-RDNet: A novel coronavirus pneumonia classification model using the mixed dataset by CT and X-rays images. Biocybern Biomed Eng 2022;42:977-94. https://doi.org/10.1016/j.bbe.2022.07.009.
  • [47] Sarv Ahrabi S, Scarpiniti M, Baccarelli E, Momenzadeh A. An Accuracy vs. Complexity Comparison of Deep Learning Architectures for the Detection of COVID-19 Disease. Computation 2021;9:3. https://doi.org/ 10.3390/computation9010003.
  • [48] Mk MV, Atalla S, Almuraqab N, Moonesar IA. Detection of COVID-19 Using Deep Learning Techniques and Cost Effectiveness Evaluation: A Survey. Front. Artif Intell 2022:5.
  • [49] Afshar P, Heidarian S, Naderkhani F, Oikonomou A, Plataniotis KN, Mohammadi A. COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images. Pattern Recognit Lett 2020;138:63843. https://doi.org/10.1016/j.patrec.2020.09.010.
  • [50] Hemdan EE-D, Shouman MA, Karar ME. COVIDX-Net: A Framework of Deep Learning Classifiers to Diagnose COVID19 in X-Ray Images 2020. https://doi.org/10.48550/ arXiv.2003.11055.
  • [51] Sethy PK, Behera SK. Detection of Coronavirus Disease (COVID-19) Based on Deep Features 2020. https://doi.org/ 10.20944/preprints202003.0300.v1.
  • [52] Wang L, Lin ZQ, Wong A. COVID-Net: a tailored deep convolutional neural network design for detection of COVID19 cases from chest X-ray images. Sci Rep 2020;10:19549. https://doi.org/10.1038/s41598-020-76550-z.
  • [53] Apostolopoulos ID, Mpesiana TA. Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med 2020;43:635-40. https://doi.org/10.1007/s13246-020-00865-4.
  • [54] Altan A, Karasu S. Recognition of COVID-19 disease from Xray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique. Chaos Solitons Fractals 2020;140. https://doi.org/ 10.1016/j.chaos.2020.110071 110071.
  • [55] Narin A, Kaya C, Pamuk Z. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Anal Appl 2021;24:1207-20. https://doi.org/10.1007/s10044-021-00984-y.
  • [56] Munusamy H, Muthukumar KJ, Gnanaprakasam S, Shanmugakani TR, Sekar A. FractalCovNet architecture for COVID-19 Chest X-ray image Classification and CT-scan image Segmentation. Biocybern Biomed Eng 2021;41:1025-38. https://doi.org/10.1016/j.bbe.2021.06.011.
  • [57] Lacerda P, Barros B, Albuquerque C, Conci A. Hyperparameter Optimization for COVID-19 Pneumonia Diagnosis Based on Chest CT. Sensors 2021;21:2174. https://doi.org/10.3390/s21062174.
  • [58] Park S, Kim G, Oh Y, Seo JB, Lee SM, Kim JH, et al. Multi-task vision transformer using low-level chest X-ray feature corpus for COVID-19 diagnosis and severity quantification. Med Image Anal 2022;75:102299.
  • [59] Bhattacharyya A, Bhaik D, Kumar S, Thakur P, Sharma R, Pachori RB. A deep learning based approach for automatic detection of COVID-19 cases using chest X-ray images. Biomed Signal Process Control 2022;71. https://doi.org/ 10.1016/j.bspc.2021.103182 103182.
  • [60] Patel RK, Kashyap M. Automated diagnosis of COVID stages from lung CT images using statistical features in 2- dimensional flexible analytic wavelet transform. Biocybern Biomed Eng 2022;42:829-41. https://doi.org/10.1016/j. Bbe.2022.06.005.
  • [61] Kumar R, Arora R, Bansal V, Sahayasheela VJ, Buckchash H, Imran J, et al. Classification of COVID-19 from chest x-ray images using deep features and correlation coefficient. Multimed Tools Appl 2022;81(19):27631-55.
  • [62] Meng J, Tan Z, Yu Y, Wang P, Liu S. TL-med: A Two-stage transfer learning recognition model for medical images of COVID-19. Biocybern Biomed Eng 2022;42:842-55. https://doi. org/10.1016/j.bbe.2022.04.005.
  • [63] Karacı A. VGGCOV19-NET: automatic detection of COVID-19 cases from X-ray images using modified VGG19 CNN architecture and YOLO algorithm. Neural Comput Appl 2022;34:8253–74. https://doi.org/10.1007/s00521-022-06918-x.
  • [64] Gupta RK, Kunhare N, Pateriya RK, Pathik N. A Deep Neural Network for Detecting Coronavirus Disease Using Chest XRay Images: Int J Healthc Inf Syst Inform 2022;17:1-27. https://doi.org/10.4018/IJHISI.20220401.oa1.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-30a73b12-d488-4569-979c-63a474e13d6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.