Warianty tytułu
Języki publikacji
Abstrakty
Thin films of Ge10–xSe60Te30Inx (x = 0, 2, 4 and 6) were developed by thermal evaporation technique. The annealing effect on the structural properties of Ge10–xSe60Te30Inx (x = 0, 2, 4 and 6) films has been studied by X-ray diffraction (XRD). The XRD results indicate amorphous nature of the as-prepared films whereas crystalline phases in annealed films were identified. Structural parameters such as average crystallite size, strain, and dislocation were determined for different annealing temperatures. Effect of annealing on optical constants of prepared films has been explored using UV-Vis spectrophotometer in the wavelength range of 400 nm to 1000 nm. Various optical constants were determined depending on annealing temperature. It has been noticed that the film transparency and optical bandgap Eg have been reduced whereas the absorption coefficient α and extinction coefficient k increased with increasing annealing temperature. It was found that the prepared samples obey the allowed direct transition. The reduction in optical bandgap with annealing temperature has been described by Mott and Davis model. Due to annealing dependence of the optical parameters, the investigated material could be utilized for phase change memory devices.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
554--562
Opis fizyczny
Bibliogr. 44 poz., tab., rys.
Twórcy
autor
- Amorphous Semiconductor Research Lab, Department of Applied Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India
autor
- Department of Physics, Punjab University, Chandigarh, India
autor
- Amorphous Semiconductor Research Lab, Department of Applied Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India, todkdwivedi@gmail.com
Bibliografia
- [1] HART S.D., MASKALY G.R., TEMELKURAN B., PRIDEAUX P.H., JOANNOPOULOS J.D., FINK Y., Science, 296 (2002), 510.
- [2] NICOLAS H., LANIEL J.M., VALLE R., VILLENEUVE A., Opt. Lett., 28 (2003), 965.
- [3] GANJOO A., JAIN H., YU C., SONG R., RYAN J.V., IRUDAYARAJ J., DING Y.G., PANTANO C.G., J. Non- Cryst. Solids, 352 (2006), 584.
- [4] SINGH P.K., DWIVEDI D.K., Ferroelectrics, 520 (2017), 256.
- [5] AL-AGELA F.A., AL-ARFAJB E.A., AL-MARZOUKIA F.M., KHAN S.A., AL-GHAMDI A.A., Prog. Nat. Sci., 23 (2013), 139.
- [6] ZAKERY A., ELLIOTT S.R., Optical Nonlinearities in Chalcogenide Glasses and their Applications, Springer, New York, 2007.
- [7] MOHAMED M., Mater. Res. Bull., 65 (2015), 840.
- [8] KHAN S.A., ZULFEQUAR M., HUSSAIN M., Physica B, 324 (2002), 266.
- [9] EL-KORASHY A., BAKRY A., ABDEL-RAHIM, M.A., EL-SATTAR M.A., Physica B, 391 (2007), 266.
- [10] FAYEK A.A., EL-KAR M., HASSANIEN A.S., Chem. Phys., 70 (2001), 231.
- [11] POPESCU M.A., Non-Crystalline Chalcogenides, Springer Science & Business Media, 2001.
- [12] BOOLCHAND P. (Ed.), Insulating and Semiconducting Glass, World Scientific, New Jersey, 2000.
- [13] CUI S., CHAHAL R., BOUSSARD-PLEDEL C., NAZABAL V., DOUALAN J.L., TROLES J., LUCAS J., BUREAU B., Molecules, 18 (2013) 5373.
- [14] SUNG-MIN Y., NAM-YEAL L., SANG-OUK R., KYUJEONG C., PARK Y.S., SEUNG-YUN L., BYOUNGGON Y., MYUNG-JIN K., SE-YOUNG C., WUTTIG M., IEEE Electron. Device. Lett., 27 (2006), 445.
- [15] LU Y., SONG S., SHEN X., WU L., SONG Z., LIU B., DAI S., NIE Q., ECS Solid State Lett., 2 (2013), 94.
- [16] SVOBODA R., KINCL M., MALEK J., J Alloy. Compd., 644 (2015), 40.
- [17] ABDEL-RAHIM M.A., ABDEL-LATIEF A.Y., ABDELSALAM, Thermochim. Acta, 573 (2013), 57.
- [18] TRIPATHI S.K., SHARMA V., THAKUR A., J Non- Cryst. Solids, 351 (2005), 2468.
- [19] AFIFI M.A., HEGAB N.A., BEKHEET A.E., SHARAF E.R., Physica B, 404 (2009), 2172.
- [20] KHAN S.A., ZULFEQUAR M., HUSAIN M., Physica B, 324 (2002), 336.
- [21] ABDINOV A.S., AKPEROV Y.G., MAMDOV V.K., SOLAEV E.Y., Sov. Phys. Semicond., 14 (1980), 440.
- [22] KUMAR H., MEHTA N., Glass Phys. Chem., 39 (2013), 490.
- [23] KUMAR H., MEHTA N., J. Adv. Phys., 2 (2013), 163.
- [24] RAOUF A.H. EL-MALLAWANY, Tellurite Glasses Handbook: Physical Properties and Data, 2nd ed., CRC Press, London, New York, (2012).
- [25] DWIVEDI D.K., PATHAK H.P., SHUKLA R.K., KUMAR A., Optik, 126 (2015), 635.
- [26] PATHAK H.P., SHUKLA N., KUMAR V., DWIVEDI D.K., Opt. Mater., 52 (2016), 584.
- [27] BUREAU B., HUA ZHANG X., SMEKTALA F., J. Non- Cryst. Solids, 345 – 346 (2004), 276.
- [28] PADIYAN D.P., MAINKANI A., MURALI K.R., Mater. Chem. Phys., 88 (2004), 250.
- [29] KUMAR P., BINDRA K.S., SURI N., THNGARAJ R., J. Phys. D: Appl. Phys., 39 (2006), 642.
- [30] SCHERRER P., Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 2, 1918, p. 98.
- [31] WILSON A.J.P., Mathematical Theory of X-ray Powder Diffractometry, Cordon and Breach, New York, 1963.
- [32] AL-GHAMDI A.A., Vacuum, 80 (2006), 400.
- [33] AL-AGEL F.A., AL-ARFAJ E.A., AL-MARZOUKI F.M., KHAN S. A., AL-GHAMDI A.A., Prog. Nat. Sci., 23 (2013), 139.
- [34] KHAN Z.H., SALAH N., HABIB S., AL-GHAMDI A.A., KHAN S. A., Opt. Laser Technol., 44 (2012), 6.
- [35] TAUC J., Amorp and Liquid Semic., in: TAUC J. (Ed.), Plenum Press, New York, 1979.
- [36] ABDEL-RAHIM M.A., HAFIZ M.M., MAHMOUD A.Z., Solid State Sci., 48 (2015), 125.
- [37] URBACH F., Phys. Rev., 92 (1953), 1324.
- [38] OLLEY J.A., Solid State Commun., 13 (1973), 1437.
- [39] ABDEL-RAHIM M.A., HAFEZ M.M., ELWHAB A., ALWANY B., Opt. Laser Technol., 44 (2012), 1116.
- [40] DAVIS E.A., MOTT N.F., Philos. Mag., 22 (1970), 903.
- [41] CHAUDHRI S., BISWAS S.K., J. Non-Cryst. Solids, 54 (1983), 179.
- [42] HASEGAWA S., KITAGAWA M., Solid State Commun., 27 (1978), 855.
- [43] NYAKOTYO H., SATHIARAJ T.S., MUCHUWENI E., Opt. Laser Technol., 92 (2017), 182.
- [44] NEET U., ZULFEQUAR M., J. Alloy. Compd., 576 (2013), 103.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-309f710d-50be-4c85-b3d5-5175ba92ec4f