Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | Vol. 70, no 3 | 1349--1361
Tytuł artykułu

The influence of rainfall time series fractality on forecasting models’ efficiency

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Forecasting rainfall time series is of great significance for hydrologists and geoscientists. Thus, this study represents a contribution to understanding the impact of the fractal time series variety on forecasting model performance. Multiple fractal series were generated via p-model and used for modeling. Subsequently, the forecasting was delivered based on existing observed monthly rainfall data (three stations in the UK, from 1865 to 2002) through five forecasting models. Finally, the association between series fractality and models’ performance was examined. The results indicated that the forecasting based on the mono-fractal series resulted in the most reliable results (R2=1 and RMSE less than 0.02). In the case of multifractal series, modeling based on series with the right side of the asymmetric curve of the multifractal spectrum presented series with the lowest RMSE (0.96) and highest R2 (0.99) (desirable performance). In contrast, the forecasting based on series with the left side of the asymmetric curve of the multifractal spectrum suggested the most unreliable outcomes (R2 range [−0.0007 ~ 0.988] and RMSE range [0.8526 ~ 39.3]). The forecasting based on the symmetric curve of the multifractal spectrum series delivered regular performance. Accordingly, high and low errors are expected from forecasting based on the time series with a left-skewed multifractal spectrum and right-skewed multifractal spectrum (and mono-fractal time series), respectively. Hybrid models were the best options for forecasting mono-fractal and multifractal time series with right side asymmetric and symmetric multifractal spectrum curves. The ARIMA model was suitable to predict multifractal time series with left side asymmetric multifractal spectrum curves.
Wydawca

Czasopismo
Rocznik
Strony
1349--1361
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
  • Department of Civil Engineering, Marvdasht Branch Islamic Azad University, Marvdasht, Iran
Bibliografia
  • 1. Jones PD, Lister DH, Kostopoulo E (2004) Science report: reconstructed river flow series from 1860 to present. Environmental Agency, Rio House, Bristol. https://crudata.uea.ac.uk/cru/data/riverflow/flowreconstruction/ReconstructedFlowsTR.pdf
  • 2. Adarsh S, Nourani V, Archana DS, Dharan DS (2020) Multifractal description of daily rainfall fields over India. J Hydrol 586:124913. https://doi.org/10.1016/j.jhydrol.2020.124913
  • 3. Al-Mukhtar M (2019) Random forest, support vector machine, and neural networks to modelling suspended sediment in Tigris River-Baghdad. Environ Monit Assess 191(11):1–2. https://doi.org/10.1007/s10661-019-7821-5
  • 4. Alves Xavier Júnior S, Stosic T, Stosic B, Da Silva JJ, Fialho Morais Xavier E (2018) A brief multifractal analysis of rainfall dynamics in Piracicaba, São Paulo, Brazil. Acta Sci Technol 40:e35116–e35116. https://doi.org/10.4025/actascitechnol.v40i1.35116
  • 5. Brown G, Michon G, Peyriere J (1992) On the multifractal analysis of measures. J Stat Phys 66(3):775–790. https://doi.org/10.1007/BF01055700
  • 6. Darji MP, Dabhi VK, Prajapati HB (2015) Precipitation forecasting using neural network: a survey. International conference on advances in computer engineering and applications, Ghaziabad, pp 706–713. https://doi.org/10.1109/ICACEA.2015.7164782
  • 7. de Lima MIP, Grasman J (1999) Multifractal analysis of 15-min and daily rainfall from a semi-arid region in Portugal. J Hydrol 220:1–11. https://doi.org/10.1016/S0022-1694(99)00053-0
  • 8. Evertsz CJ, Mandelbrot BB (1992) Multifractal measures. Chaos Fractals 1992:921–953
  • 9. Feder J (1988) Fractals. Plenum Press, New York
  • 10. Frisch U, Parisi G (1985) Fully developed turbulence and intermittency. In: Ghil M, Benzi R, Parisi G (eds) Turbulence and predictability in geophysical fluid dynamics and climate dynamics. North-Holland, New York, pp 84–88
  • 11. Guo E, Zhang J, Si H, Dong Z, Cao T, Lan W (2016) Temporal and spatial characteristics of extreme precipitation events in the Midwest of Jilin Province based on multifractal detrended fluctuation analysis method and copula functions. Theor Appl Climatol 130:597–607. https://doi.org/10.1007/s00704-016-1909-4
  • 12. Hekmatzadeh AA, Haghighi AT, Guyomi KH, Amiri SM, Kløve B (2020) The effects of extremes and temporal scale on multifractal properties of river flow time series. River Res Appl 36(1):171–182. https://doi.org/10.1002/rra.3550
  • 13. Hurst HE (1951) Long-term storage capacity of reservoirs. Trans Am Soc Civil Eng 116:770–799
  • 14. Hussain A, Singh JK, Kumar AR, Harne KR (2019) Precipitation-runoff modeling of Sutlej River Basin (India) using soft computing techniques. Int J Agric Environ Inf Syst 10(2):1–20. https://doi.org/10.4018/IJAEIS.2019040101
  • 15. Igbawua T, Zhang J, Yao F, Ali S (2019) Long range correlation in vegetation over West Africa from 1982 to 2011. IEEE Access 7:119151–119165. https://doi.org/10.1109/ACCESS.2019.2933235
  • 16. Ihlen E (2020) Multifractal detrended fluctuation analysis. MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/38262-multifractal-detrended-fluctuation-analyses
  • 17. Isaacson LK (2018) Entropy generation through the interaction of laminar boundary-layer flows: sensitivity to initial conditions. J Mod Phys 9(08):1660
  • 18. Jovanovic D, Jovanovic T, Mejía A, Hathaway J, Daly E (2018) Technical note: long-term persistence loss of urban streams as a metric for catchment classification. Hydrol Earth Syst Sci 22(6):3551–3559. https://doi.org/10.5194/hess-22-3551-2018
  • 19. Kalamaras N, Tzanis CG, Deligiorgi D, Philippopoulos K, Koutsogiannis I (2019) Distribution of air temperature multifractal characteristics over Greece. Atmosphere 10(2):45. https://doi.org/10.3390/atmos10020045
  • 20. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Phys A 316(1):87–114. https://doi.org/10.1016/S0378-4371(02)01383-3
  • 21. Kantelhardt JW, Rybski D, Zschiegner SA, Braun P, Koscielny-Bunde E, Livina V, Havlin S, Bunde A (2003) Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet methods. Phys A 330(1):240–245. https://doi.org/10.1016/j.physa.2003.08.019
  • 22. Khatibi R, Nadiri AA (2021) Inclusive Multiple Models (IMM) for predicting groundwater levels and treating heterogeneity. Geosci Front 12(2):713–724. https://doi.org/10.1016/j.gsf.2020.07.011
  • 23. Lee KH, Anagnostou EN (2004) Investigation of the nonlinear hydrologic response to precipitation forcing in physically based land surface modeling. Can J Remote Sens 30(5):706–716. https://doi.org/10.5589/m04-037
  • 24. Li EH, Mu XM, Zhao GJ, Gao P (2015) Multifractal detrended fluctuation analysis of streamflow in the yellow River Basin, China. Water 7(4):1670–1686. https://doi.org/10.3390/w7041670
  • 25. Liu D, Luo M, Fu Q, Zhang Y, Imran KM, Zhao D, Li T, Abrar FM (2016) Precipitation complexity measurement using multifractal spectra empirical mode decomposition detrended fluctuation analysis. Water Resour Manag 30(2):505–522. https://doi.org/10.1007/s11269-015-1174-9
  • 26. Liu D, Cheng C, Fu Q, Liu C, Li M, Faiz MA, Li T, Imran Khan M, Cui S (2018) Multifractal detrended fluctuation analysis of regional precipitation sequences based on the CEEMDAN-WPT. Pure Appl Geophys 175(8):3069–3084. https://doi.org/10.1007/s00024-018-1820-2
  • 27. López-Lambraño A, Fuentes C, López-Ramos A, Pliego-Díaz M, López-L M (2016) Rainfall series fractality in the Baja California State. In: Klapp J, Sigalotti L, Medina A, López A, Ruiz-Chavarría G (eds) Recent advances in fluid dynamics with environmental applications. Environmental science and engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-27965-7_11
  • 28. Mandelbrot BB, Fisher AJ, Calvet LE (1997) A multifractal model of asset returns (September 15, 1997). Cowles foundation discussion Paper No. 1164, Sauder School of Business Working Paper, Available at SSRN: https://ssrn.com/abstract=78588
  • 29. Mandelbrot BB, Mandelbrot BB (1982) The fractal geometry of nature, vol 1. WH Freeman, New York
  • 30. Miloş LR, Haţiegan C, Miloş MC, Barna FM, Boțoc C (2020) Multifractal detrended fluctuation analysis (MF-DFA) of Stock Market Indexes. Empirical evidence from seven central and eastern European markets. Sustainability 12(2):535. https://doi.org/10.3390/su12020535
  • 31. Movahed MS, Jafari GR, Ghasemi F, Rahvar S, Tabar MRR (2006) Multifractal detrended fluctuation analysis of sunspot time series. J Stat Mech Theory Exp 2006(02):P02003. https://doi.org/10.1088/1742-5468/2006/02/P02003
  • 32. Muzy JF, Bacry E, Arneodo A (1991) Wavelets and multifractal formalism for singular signals: application to turbulence data. Phys Rev Lett 67(25):3515. https://doi.org/10.1103/PhysRevLett.67.3515
  • 33. Nadiri AA, Razzagh S, Khatibi R, Sedghi Z (2021) Predictive groundwater levels modelling by Inclusive Multiple Modelling (IMM) at multiple levels. Earth Sci Inform 14(2):749–763. https://doi.org/10.1007/s12145-021-00572-y
  • 34. Niromandfard F, KhasheiSiuki A, Shahidi A (2019) Evaluation of the neuro-fuzzy and hybrid wavelet-neural models efficiency in river flow forecasting (case study: Mohmmad Abad Watershed). J Watershed Manag Res 10(19):211–221. https://doi.org/10.29252/jwmr.10.19.211
  • 35. Olsen L (1995) A multifractal formalism. Adv Math 116(1):82–196. https://doi.org/10.1006/aima.1995.1066
  • 36. Pathirana A, Herath S, Yamada T (2003) Estimating rainfall distributions at high temporal resolutions using a multifractal model. Hydrol Earth Syst Sci 7(5):668–679. https://doi.org/10.5194/hess-7-668-2003
  • 37. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49(2):1685–1689. https://doi.org/10.1103/PhysRevE.49.1685
  • 38. Pesin YB (2008) Dimension theory in dynamical systems. University of Chicago Press, Chicago
  • 39. Rahmani F, Fattahi MH (2020) Investigation of denoising effects on forecasting models by statistical and nonlinear dynamic analysis. J Water Clim Change 12(5):1614–1630. https://doi.org/10.2166/wcc.2020.014
  • 40. Rahmani F, Fattahi MH (2021a) A multifractal cross- correlation investigation into sensitivity and dependence of meteorological and hydrological droughts on precipitation and temperature. Nat Hazards 5:1–23. https://doi.org/10.1007/s11069-021-04916-1
  • 41. Rahmani F, Fattahi MH (2021b) Nonlinear dynamic analysis of the fault activities induced by groundwater level variations. Groundw Sustain Dev 14:100629. https://doi.org/10.1016/j.gsd.2021.100629
  • 42. Rahmani F, Fattahi MH (2021c) Phase space mapping of pivotal climatic and non-climatic elements affecting Basin’ drought. Arab J Geosci 14(5):1–12. https://doi.org/10.1007/s12517-021-06734-y
  • 43. Riedi R (1995) An improved multifractal formalism and self-similar measures. J Math Anal Appl 189(2):462–490. https://doi.org/10.1006/jmaa.1995.1030
  • 44. Sanikhani H, Kisi O, Maroufpoor E, Mundher Yaseen Z (2019) Temperatures-based modeling of reference evapotranspiration using several artificial intelligence models: application of different modeling scenarios. Theor Appl Climatol 135(1):449–462. https://doi.org/10.1007/s00704-018-2390-z
  • 45. Yuan XH, Ji B, Tian H, Huang YH (2014) Multiscaling analysis of monthly runoff series using improved MF-DFA approach. Water Resour Manag Int J 28(12):3891–3903. https://doi.org/10.1007/s11269-014-0715-y
  • 46. Zhang Q, Xu CY, Chen YQD, Yu ZG (2008) Multifractal detrended fluctuation analysis of streamflow series of the Yangtze River Basin, China. Hydrol Process 22(26):4997–5003. https://doi.org/10.1002/hyp.7119
  • 47. Zhang X, Zhang G, Luo Q, Zhang B, Sun Y, Gui Z, Zhang Q (2019) A modified multifractal detrended fluctuation analysis (MFDFA) Approach for multifractal analysis of precipitation in Dongting Lake Basin, China. Water 11(5):891. https://doi.org/10.3390/w11050891
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3091b1be-4ba7-4240-b713-3d548a9b5c1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.