Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a modified DC/DC high step up converter is proposed. Maximum power point tracking, which is very important in photovoltaic (PV) applications, is dependent on input current ripple of the PVs. In some other converters where the input current ripple is high, maximum power point cannot track properly. Therefore the proposed converter is designed based on the premise of reducing input current ripple compatible with the photovoltaic energy sources. The converter has six different modes, which are detailed in this paper. All inductor currents are illustrated and the sizing of the inductors used in the proposed structure calculated. The output voltage gain and input current ripple are investigated. The proposed converter is compared to other recent high step up converters from the angle of input current ripple. Finally, simulations are done in the PSCAD/EMTDC software package to verify the operations of the proposed converter.
Czasopismo
Rocznik
Tom
Strony
187--194
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran, naserhassanpoor@gmail.com
autor
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran, aashrafg@gmail.com
autor
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran, sabahi@tabrizu.ac.ir
Bibliografia
- [1] P. Nema, R. Nema, S. Rangnekar, A current and future state of art development of hybrid energy system using wind and pv-solar: A review, Renewable and Sustainable Energy Reviews 13 (8) (2009) 2096–2103.
- [2] Y. A. Gandomi, T. A. Zawodzinski, M. M. Mench, Concentrated solution model of transport in all vanadium redox flow battery membrane separator, ECS Transactions 61 (13) (2014) 23–32.
- [3] J. D. Guggenberger, A. C. Elmore, J. L. Tichenor, M. L. Crow, Performance prediction of a vanadium redox battery for use in portable, scalable microgrids, IEEE Transactions on smart Grid 3 (4) (2012) 2109– 2116.
- [4] Y. A. Gandomi, M. Edmundson, F. Busby, M. M. Mench, Water management in polymer electrolyte fuel cells through asymmetric thermal and mass transport engineering of the micro-porous layers, Journal of The Electrochemical Society 163 (8) (2016) F933–F944.
- [5] Y. A. Gandomi, D. Aaron, T. Zawodzinski, M. Mench, In situ potential distribution measurement and validated model for all-vanadium redox flow battery, Journal of The Electrochemical Society 163 (1) (2016) A5188–A5201.
- [6] Y. A. Gandomi, D. Aaron, M. Mench, Coupled membrane transport parameters for ionic species in all-vanadium redox flow batteries, Electrochimica Acta 218 (2016) 174–190.
- [7] Q. Li, P. Wolfs, A review of the single phase photovoltaic module integrated converter topologies with three different dc link configurations, IEEE Transactions on Power Electronics 23 (3) (2008) 1320–1333.
- [8] K. Strunz, E. Abbasi, D. N. Huu, Dc microgrid for wind and solar power integration, IEEE Journal of emerging and selected topics in Power Electronics 2 (1) (2013) 115–126.
- [9] V. Benda, Photovoltaics towards terawatts–progress in photovoltaic cells and modules, IET Power Electronics 8 (12) (2015) 2343–2351.
- [10] W. Chen, Y. Duan, L. Guo, Y. Xuan, X. Yang, Modeling and prediction of Figure 13: The voltage and current waveform of L2 radiated emission from solar cell in a photovoltaic generation system, IEEE Journal of Photovoltaics 6 (2) (2016) 540–545.
- [11] A. Tofighi, Performance evaluation of pv module by dynamic thermal model, Journal of Power Technologies 93 (2) (2013) 111–121.
- [12] A. El Shahat, Pv module optimum operation modeling, Journal of Power technologies 94 (1) (2014) 50–66.
- [13] M.-K. Nguyen, Y.-C. Lim, J.-H. Choi, G.-B. Cho, Isolated high step-up dc–dc converter based on quasi-switched-boost network, IEEE Transactions on Industrial Electronics 63 (12) (2016) 7553–7562.
- [14] A. Chub, D. Vinnikov, F. Blaabjerg, F. Z. Peng, A review of galvanically isolated impedance-source dc–dc converters, IEEE Transactions on Power Electronics 31 (4) (2015) 2808–2828.
- [15] A. A. Gandomi, S. Saeidabadi, S. H. Hosseini, E. Babaei, M. Sabahi, Transformer-based inverter with reduced number of switches for renewable energy applications, IET Power Electronics 8 (10) (2015) 1875–1884.
- [16] H. Liu, H. Hu, H. Wu, Y. Xing, I. Batarseh, Overview of high-step-up coupled-inductor boost converters, IEEE Journal of Emerging and Selected Topics in Power Electronics 4 (2) (2016) 689–704.
- [17] G. Chen, Y. Deng, Y. Tao, X. He, Y. Wang, Y. Hu, Topology derivation and generalized analysis of zero-voltage-switching synchronous dc–dc converters with coupled inductors, IEEE Transactions on Industrial Electronics 63 (8) (2016) 4805–4815.
- [18] P. Saadat, K. Abbaszadeh, A single-switch high step-up dc–dc converter based on quadratic boost, IEEE Transactions on Industrial Electronics 63 (12) (2016) 7733–7742.
- [19] L. He, Y. Liao, An advanced current-autobalance high step-up converter with a multicoupled inductor and voltage multiplier for a renewable power generation system, IEEE Transactions on Power Electronics 31 (10) (2015) 6992–7005.
- [20] G. Wu, X. Ruan, Z. Ye, Nonisolated high step-up dc–dc converters adopting switched-capacitor cell, IEEE Transactions on Industrial Electronics 62 (1) (2014) 383–393.
- [21] B. Axelrod, Y. Berkovich, A. Ioinovici, Switched-capacitor/switchedinductor structures for getting transformerless hybrid dc–dc pwm converters, IEEE Transactions on Circuits and Systems I: Regular Papers 55 (2) (2008) 687–696.
- [22] X. Hu, C. Gong, A high voltage gain dc–dc converter integrating coupled-inductor and diode–capacitor techniques, IEEE transactions on power electronics 29 (2) (2013) 789–800.
- [23] Y. J. A. Alcazar, D. de Souza Oliveira, F. L. Tofoli, R. P. Torrico-Bascopé, Dc–dc nonisolated boost converter based on the three-state switching cell and voltage multiplier cells, IEEE Transactions on Industrial Elec-tronics 60 (10) (2012) 4438–4449.
- [24] W. Li, X. He, Review of nonisolated high-step-up dc/dc converters in photovoltaic grid-connected applications, IEEE Transactions on Industrial Electronics 58 (4) (2010) 1239–1250.
- [25] A. H. El Khateb, N. A. Rahim, J. Selvaraj, B. W. Williams, Dc-to-dc converter with low input current ripple for maximum photovoltaic power extraction, IEEE Transactions on Industrial Electronics 62 (4) (2014) 2246–2256.
- [26] M. Schuck, R. C. Pilawa-Podgurski, Ripple minimization through harmonic elimination in asymmetric interleaved multiphase dc–dc converters, IEEE Transactions on Power Electronics 30 (12) (2015) 7202– 7214.
- [27] H. Feyzi, R. Gholizadeh-Roshanagh, M. Sabahi, S. NajafiRavadanegh, Incorporating dc–dc boost converters in power flow studies, Journal of Power Technologies 97 (1) (2017) 28–34.
- [28] J. C. Rosas-Caro, F. Mancilla-David, J. C. Mayo-Maldonado, J. M. Gonzalez-Lopez, H. L. Torres-Espinosa, J. E. Valdez-Resendiz, A transformer-less high-gain boost converter with input current ripple cancelation at a selectable duty cycle, IEEE Transactions on Industrial Electronics 60 (10) (2012) 4492–4499.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-307f92dd-e529-4f88-bcfe-bddef129adfa