Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 23, iss. 5 | 42--53
Tytuł artykułu

Quantification and Evaluation of Water Erosion by RUSLE/GIS Approach in the Ykem Watershed (Western Morocco)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Water erosion of soils considered the main cause of soil degradation in Morocco. Soil erosion not only reduces agricultural productivity but also reduces water availability, and negatively contributes to the quality of drinking water sources. Consequently, the assessment of soil erosion risk has become the objective of several researches at the Moroccan level. It is in this context the purpose of this study is to assess the soil erosion risk using a Revised Universal Soil Loss Equation (RUSLE) / Geographic Information System (GIS) approach at the scale of the watershed of the Oued Ykem (western Morocco). (GIS) techniques were adopted to process the data obtained at the watershed scale, of reasonable spatial resolution (30 m) for the application of the RUSLE model. The latter is a multiplication of the five factors of erosion: the rainfall erosivity (R), the soil erodibility (K), the slope length and steepness (LS), the cover and management and the support practice (P). Each of these factors has been expressed as a thematic map. The Oued Ykem watershed is an elongated coastal basin with an area of 516 km2. It is part of the Atlantic coastal basins of western Morocco. It is located southwest of the city of Rabat. Oued Ykem is characterized by a semi-arid climate with oceanic influence. Rare and irregular rains, mostly stormy in nature, combined with deforestation, cause erosion and irregular flow. Its flow-rate increases during the winter. Extreme flows-rate can be recorded after exceptional and very intense showers upstream of the basin. The resulting soil loss map, with an average erosion rate varying from 0 to 54 t/ha/year, showed low erosion. Areas with a strong erosion rate exceeding 30 t/ ha/ year cover about 3.8 % of the basin area. The analysis of the erosion risk map, in comparison with the maps of the different factors in the equation, showed a clear and important influence of the vegetation cover on the soil erosion (C factor is from 0.03 to 0.9), followed by the topographic factor, especially the slope (LS factor varies from 0 to 56.71).
Wydawca

Rocznik
Strony
42--53
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
  • Laboratory of Geosciences, Department of Geology, Faculty of Sciences, Kénitra, BP 133, Morocco, mohameden.aoufa@gmail.com
  • Department of Natural Resources and Environment, Hassan II Agronomy and Veterinary Institute, Rabat, 6202, Morocco
  • Laboratory of Geoscience and Applications, Faculty of Sciences, Hassan II University of Casablanca, Ben M’sik, 7955, Morocco
  • Laboratory of Geosciences, Department of Geology, Faculty of Sciences, Kénitra, BP 133, Morocco
  • Department of Geology, Faculty of Sciences and Techniques Nouakchott El, Aasriya, Nouakchott, Mauritania
autor
  • Laboratory of Geoscience and Applications, Faculty of Sciences, Hassan II University of Casablanca, Ben M’sik, 7955, Morocco
  • Laboratory of Geosciences, Department of Geology, Faculty of Sciences, Kénitra, BP 133, Morocco
  • Laboratory of Geosciences, Department of Geology, Faculty of Sciences, Kénitra, BP 133, Morocco
Bibliografia
  • 1. ABHBC. 2012. Plan directeur d’Aménagement Intégré des Ressources en eau du Bassin du Bouregreg et de la Chaouia. Rapport de Synthese 305-1192–12a. Maroc, 79.
  • 2. Ait Fora, A. 1995. Modélisation spatiale de l’érosion hydrique dans un bassin versant du roc marocain : validation de l’approche géomatique par la sédimentologie, les traceurs radio-actifs et la susceptibilité magnétique des sédiments. Sherbrooke University. Available at: https://savoirs.usherbrooke.ca/handle/11143/15382 (Accessed: 31 October 2021).
  • 3. Angima, S.D. et al. 2003. Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture, Ecosystems & Environment, 97(1–3), 295–308. DOI: 10.1016/S0167-8809(03)00011-2
  • 4. Arnold, J.G. et al. 1998. Large Area Hydrologic Modeling and Assessment Part I: Model Development1. JAWRA Journal of the American Water Resources Association, 34(1), 73–89. DOI: 10.1111/j.1752-1688.1998.tb05961.x
  • 5. Arnoldus, H.M.J. 1980. An approximation of the rainfall factor in the Universal Soil Loss Equation. An approximation of the rainfall factor in the Universal Soil Loss Equation., 127–132.
  • 6. Aroussi, O.E. et al. 2011. Predicting the potential annual soil loss using the revised universal soil loss equation (RUSLE) in the Oued El Malleh catchment (prerif, morocco)’. Available at: https://www.semanticscholar.org/paper/predicting-the-potential-annual-soil-lossusing-the-Aroussi-Mesrar/50381b48bba6af663ec91fbff868802ab717e7eb (Accessed: 31 Oct. 2021).
  • 7. Azaiez, N. 2021. Improved modelling of soil loss in El Badalah Basin: Comparing the performance of the universal soil loss equation, revised universal soil loss equation and modified universal soil loss equation models by using the magnetic and gravimetric prospection outcomes. Journal of Geoscience and Environment Protection, 9(4), 50–73. DOI: 10.4236/gep.2021.94005
  • 8. Beasley, D., Huggins, L., Monke, E. 1980. ‘ANSWERS: a model for watershed planning.’, Transactions of the ASAE, 23. DOI: 10.13031/2013.34692
  • 9. Bizuwerk, A., Taddese, G., Getahun, Y. 2008. Application of GIS for Modeling Soil loss rate in Awash River Basin, Ethiopia’. Available at: https://www.academia.edu/8344707/Application_of_GIS_for_Modeling_Soil_loss_rate_in_Awash_River_Basin_Ethiopia (Accessed: 4 June 2020).
  • 10. Boufala, M. et al. 2020. Assessment of the risk of soil erosion using RUSLE method and SWAT model at the M’dez Watershed, Middle Atlas, Morocco. E3S Web of Conferences. Edited by A. Akhssas et al., 150, 03014. DOI: 10.1051/e3sconf/202015003014
  • 11. Bouhadeb, C. et al. 2018. Assessing soil loss using GIS based RUSLE methodology. Case of the Bou Namoussa watershed – North-East of Algeria’. Journal of Water and Land Development, 36, 27–35. DOI: 10.2478/jwld-2018-0003.
  • 12. Bou-Imajjane, L. et al. 2020. Soil erosion assessment in a semi-arid environment: a case study from the Argana Corridor, Morocco’, Environmental Earth Sciences, 79. DOI: 10.1007/s12665-020-09127-8
  • 13.Boussadia-Omari, L. et al. 2021. Contribution of phytoecological data to spatialize soil erosion: Application of the RUSLE model in the Algerian atlas. International Soil and Water Conservation Research, 9(4), 502–519. DOI: 10.1016/j.iswcr.2021.05.004
  • 14.Chadli, K. 2016. Estimation of soil loss using RUSLE model for Sebou watershed (Morocco). Modeling Earth Systems and Environment, 2(2), 51. DOI: 10.1007/s40808-016-0105-y
  • 15. Chevalier, J. et al. 1994. Systèmes d’Aide à la Planification Pour la Conservation des Eaux et des Sols (Tunisie). Systèmes d’Information Géographique Utilisant les Données de Télédétection. Actes du colloque scientifique international, Hammamet, Tunisie.
  • 16. Duarte, L., Cunha, M., Teodoro, A.C. 2021. Comparing Hydric Erosion Soil Loss Models in Rainy Mountainous and Dry Flat Regions in Portugal. Land, 10(6), 554. DOI: 10.3390/land10060554
  • 17. Efthimiou, N., Lykoudi, E., Psomiadis, E. 2020. Inherent relationship of the USLE, RUSLE topographic factor algorithms and its impact on soil erosion modelling. Hydrological Sciences Journal, 65(11), 1879–1893. DOI: 10.1080/02626667.2020.1784423
  • 18. FAO. /IIASA/ISRIC/ISS-CAS/JRC. 2009. Harmonized World Soil Database - Version 1.1. FAO, Rome, Italy and IIASA, Laxenburg, Austria.
  • 19. FAO, UNEP and UNESCO. 1979. A provisional methodology for soil degradation assessment. Available at: https://agris.fao.org/agris-search/search.do?recordID=XF8108785 (Accessed: 4 June 2020).
  • 20. Gelagay, H.S., Minale, A.S. 2016. Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia’, International Soil and Water Conservation Research, 4(2), 126–136. DOI: 10.1016/j.iswcr.2016.01.002
  • 21. Ghanem, H. 1981. Classification et répartition des sols dans la région des Zairs, de la basse Chaouia et des Sehouls, Méséta Atlantique Marocaine. Thèse de Doctorat. Université de Gand.
  • 22. Gumière, S.J. 2009. Contribution à la modélisation déterministe spatialisée de l’érosion hydrique des sols à l’échelle des petits bassins versants cultivés. phdthesis. Institut National d’Etudes Supérieures Agronomiques de Montpellier. Available at: https://hal.inrae.fr/tel02823756 (Accessed: 31 October 2021).
  • 23. Hara, F. et al. 2020. Study of soil erosion risks using RUSLE Model and remote sensing: case of the Bouregreg watershed (Morocco). Proceedings of the International Association of Hydrological Sciences, 383, 159–162. DOI: 10.5194/piahs-383-159-2020
  • 24. HCEFLCD. 2007. Plan d’Action du Haut Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification. Maroc, 37. Available at: https://www.fao.org/faolex/results/details/es/c/LEX-FAOC164708/ (Accessed: 31 October 2021).
  • 25.Issa, L.K. et al. 2014. Mapping and Assessment of Water Erosion in the Khmiss Watershed (North Western Rif, Morocco). Current Advances in Environmental Science, 2(4), 119–130. DOI: 10.14511/caes.2014.020401
  • 26. Issa, L.K. et al. 2016. Cartographie Quantitative du Risque d’Erosion des Sols par Approche SIG/USLE au Niveau du Bassin Versant Kalaya (Maroc Nord Occidental). Journal of Materials and Environmental Science, 7(8), 2778–2795.
  • 27.Jahun, B.G. et al. 2015. Review of Soil Erosion Assessment using RUSLE Model and GIS. Journal of Biology, 13.
  • 28. Kalman, R. 1967. Le facteur climatique de l’érosion dans le bassin du Sebou. Maroc: Rapport du Ministère de l’Agriculture, 40.
  • 29. Khemiri, K., Jebari, S. 2021. Évaluation de l’érosion hydrique dans des bassins versants de la zone semi-aride tunisienne avec les modèles RUSLE et MUSLE couplés à un Système d’information géographique’, Cahiers Agricultures, 30, 7. DOI: 10.1051/cagri/2020048
  • 30. Knisel, W.G. 1980. CREAMS: A field Scale model for Chemicals, Runoff and Erosion From Agricultural management Systems. 26. US Department of Agriculture, 690. Available at: https://www.tucson.ars.ag.gov/unit/publications/PDFfiles/312.pdf (Accessed: 31 October 2021).
  • 31. Kouli, M., Soupios, P., Vallianatos, F. 2009. Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental Geology, 57(3), 483–497. DOI: 10.1007/s00254-008-1318-9.
  • 32. Lahlaoi, H. et al. 2015. Potential Erosion Risk Calculation Using Remote Sensing and GIS in Oued El Maleh Watershed, Morocco. Journal of Geographic Information System, 7(2), 128–139. DOI: 10.4236/jgis.2015.72012.
  • 33. Le Roux J.J., Jacobus J. 2007. Soil erosion prediction under changing land use on Mauritius. Dissertation. University of Pretoria. Available at: https://repository.up.ac.za/handle/2263/25468 (Accessed: 1 November 2021).
  • 34. Markhi, A. et al. 2015. Quantification et évaluation de l’érosion hydrique en utilisant le modèle RUSLE et déposition intégrés dans un SIG. Application dans le bassin versant N’fis dans le haut atlas de Marrakech (Maroc). European Scientific Journal, ESJ, 11(29), 17.
  • 35. Medhioub, E., Bouaziz, M., Bouaziz, S. 2018. Assessment of soil erosion by water using RUSLE, remote sensing and GIS in Gabes Coast-Southern Tunisia: Study case of Oued El Sourrag Watershed. In: Kallel, A. et al. (Eds.) Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions. Cham: Springer International Publishing. Advances in Science, Technology & Innovation, 1805–1806. DOI: 10.1007/978-3-319-70548-4_523
  • 36. Mhirit, O., Benchekroun, F. 2006. Abhatoo: Les écosystèmes forestiers et périforestiers: situation, enjeux et perspectives pour 2025. Rapport sur le Développement Humain au Maroc. Rabat: Haut Commissariat au Plan, 91. Available at: http://www.rdh50.ma/fr/pdf/contributions/GT8-7.pdf (Accessed: 31 October 2021)
  • 37. Mitasova, H. et al. 1996. Modelling topographic potential for erosion and deposition using GIS. International Journal of Geographical Information Systems, 10(5), 629–641. DOI: 10.1080/02693799608902101
  • 38. Modeste, M. et al. 2016. Cartographie Des Risques De L’erosion Hydrique Par L’equation Universelle Revisee Des Pertes En Sols, La Teledetection Et Les Sig Dans Le Bassin Versant De L’ourika (Haut Atlas, Maroc). European Scientific Journal, ESJ, 12(32), 277. DOI: 10.19044/esj.2016.v12n32p277
  • 39. Moore, I.D., Wilson, J.P. 1992. Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation. Journal of Soil and Water Conservation, 47(5), 423–428.
  • 40. Moussa, R., Voltz, M., Andrieux, P. 2002. Effects of the Spatial Organization of Agricultural Management on the Hydrological Behaviour of a Farmed Catchment During Flood Events, Hydrological Processes, 16, 393–412. DOI: 10.1002/hyp.333.
  • 41. Nearing, M. et al. 1989. A Process-Based Soil Erosion Model for USDA-Water Erosion Prediction Project Technology’, Transactions of the ASAE, 32. DOI: 10.13031/2013.31195
  • 42. Nord, G., Esteves, M. 2005. PSEM_2D: A physically based model of erosion processes at the plot scale’, Water Resources Research, W08407, 41. DOI: 10.1029/2004WR003690.
  • 43. Ouallali, A. et al. 2016. Evaluation et cartographie des taux d’érosion hydrique dans le bassin versant de l’Oued Arbaa Ayacha (Rif occidental, Nord Maroc)’, 38, 65–79.
  • 44. Ouedraogo, B., Kabore, O., Kabore, M. 2019. Cartographie quantitative de l’érosion des sols par approche SIG/RUSLE dans la Commune de Karangasso vigué (Burkina Faso). International Journal of Biological and Chemical Sciences, 13(3), 1638. DOI: 10.4314/ijbcs.v13i3.35.
  • 45. Prasannakumar, V. et al. 2012. Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geoscience Frontiers, 3(2), 209–215. DOI: 10.1016/j.gsf.2011.11.003.
  • 46. Raissouni, A. 2012. Modélisation et cartographie de la sensibilité et de l’aléa d’érosion des sols à l’échelle régionale par SIG et USLE (Rif Nord occidental, Maroc ). Université Abdelmalek Essaadi faculté des sciences et techniques Tanger. Available at: http://thesesenafrique.imist.ma/handle/123456789/1682 (Accessed: 8 January 2022).
  • 47. Renard, K.G. et al. 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Washington, DC (USA) ARS. Available at: https://scholar.google.com/scholar_lookup?title=Predicting+soil+erosion+by+water%3A+a+guide+to+conservation+planning+with+the+Revised+Universal+Soil+Loss+Equation+%28RUSLE%29&author=Renard%2C+K.G.&publication_year=1997 (Accessed: 27 February 2022).
  • 48. Roo, A.P.J. de, Wesseling, C.G., Ritsema, C.J. 1996. ‘LISEM: a single-event physically based hydrological and soil erosion model for drainage basins; I: theory, input and output’, Hydrological Processes, 10(8), 1107–1117.
  • 49. Scheffe, L. 2008. Revised Universal Soil Loss Equation, Version 2 (RUSLE2)’. USDA NAL. Available at: http://fargo.nserl.purdue.edu/rusle2_dataweb/NRCS_Soils_Database.htm (Accessed: 1 November 2021).
  • 50. Senanayake, S. et al. 2020. Assessing Soil Erosion Hazards Using Land-Use Change and Landslide Frequency Ratio Method: A Case Study of Sabaragamuwa Province, Sri Lanka. Remote Sensing, 12(9), 1483. DOI: 10.3390/rs12091483.
  • 51. Shrestha, S. et al. 2020. Evaluation of adaptation options for reducing soil erosion due to climate change in the Swat River Basin of Pakistan. Ecological Engineering, 158, 106017. DOI: 10.1016/j.ecoleng.2020.106017.
  • 52.Smith, R., Goodrich, D. 1986. KINEROS: A kinematic runoff and erosion model documentation and user manual [Preprint]. Available at: https://www.semanticscholar.org/paper/KINEROS%3A-Akinematic-runoff-and-erosion-model-and-SmithGoodrich/873ed4e563b14c05ef40fd7f701034d10199f924 (Accessed: 31 October 2021).
  • 53. Tahiri, M., Tabyaoui, H. 2014. Evaluation et Quantification de l’Erosion et la Sédimentation à Partir des Modèles RUSLE, MUSLE et Déposition Intégrés dans un SIG. Application au Sous-Bassin de l’Oued Sania (Bassin de Tahaddart, Rif nord occidental, Maroc), 23.
  • 54. Thiaw, I. 2017. Mapping of Soil Erosion Risk in the Diarha Watershed Using Rusle, RS and GIS’, American Journal of Remote Sensing, 5(4), 30. DOI: 10.11648/j.ajrs.20170504.11
  • 55. Van der Knijff, J., Jones, R., Montanarella, L. 2000. Soil erosion risk assessment in Europe. EUR 19044 EN. Luxembourg: Office for Official Publications of the European Communities, 34.
  • 56. Wall, G. et al. 1987. Soil Erosion – Causes and Effects. Soil Erosion, 10.
  • 57. Williams, J.R. 1975. Sediment Routing for Agricultural Watersheds1. JAWRA Journal of the American Water Resources Association, 11(5), 965–974. DOI: 10.1111/j.1752-1688.1975.tb01817.x
  • 58. Williams, J.R., Renard, K.G., Dyke, P.T. 1983. EPIC: A new method for assessing erosion’s effect on soil productivity. Journal of Soil and Water Conservation, 38(5), 381–383.
  • 59. Williams, J.R., Singh, V. 1995. The EPIC Model, Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, Colorado, 909–1000.
  • 60. Wischmeier, W.H., Smith, D.D. 1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. Handbook. Department of Agriculture, Science and Education Administration.
  • 61. Xu, L., Xu, X., Meng, X. 2013. Risk assessment of soil erosion in different rainfall scenarios by RUSLE model coupled with Information Diffusion Model: A case study of Bohai Rim, China’, CATENA, 100, 74–82. DOI: 10.1016/j.catena.2012.08.012
  • 62. Zouagui, A. et al. 2018. Modelisation Du Risque D’érosion Hydrique Par L’équation Universelle Des Pertes En Terre Dans Le Rif Occidental: Cas Du Bassin Versant De Moulay Bouchta (Maroc). European Scientific Journal, ESJ, 14(3), 524. DOI: 10.19044/esj.2018.v14n3p524.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2fd7f413-8ff2-4cc9-a174-7c2be0da5629
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.