Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 15, no. 2 | 123--134
Tytuł artykułu

Analysis of the effectiveness of wastewater treatment in activated sludge technology with biomass recirculation

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the operation of a wastewater treatment plant, the key challenge for the operator is to obtain parameters of the treated wastewater required by relevant legal acts. Meeting these requirements is possible through the use of an appropriate technology and real-time automation of control and monitoring processes. The paper examines the results of laboratory tests of selected wastewater parameters in terms the content of organic substances and nutrients in order to determine the efficiency of wastewater treatment in a biological bioreactor using the sludge recirculation process. The performed analysis demonstrated that all levels involving the reduction of pollutants, concentrations and load are in compliance with the applicable legal requirements. Ensuring a continuous monitoring of the quality of treated wastewater and the optimization of this process is crucial for the aquatic environment and human health.
Wydawca

Rocznik
Strony
123--134
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
  • PhD Eng., Assoc. Prof.; State University of Applied Sciences in Nowy Sącz, Institute of Engineering, Zamenhofa 1A, 33-300 Nowy Sącz, Poland, jciula@pwsz-ns.edu.pl
Bibliografia
  • [1] Przydatek, G., Kochanek, A., & Basta, M. (2017). Analysis of Changes in Municipal Waste Management at the County Level. Journal of Ecological Engineering, 18(1), 72-80.
  • [2] Ciuła, J. (2021). Modeling the migration of anthropogenic pollution from active municipal landfill in groundwaters. Architecture Civil Engineering Environment, 14(2), 81-90.
  • [3] Wysowska, E., Wiewiórska, I., & Kicińska, A. (2021). The impact of different stages of water treatment process on the number of selected bacteria. Water Resources and Industry, 26, 100167.
  • [4] Lipińska, D. (2016). Podstawy inżynierii środowiska. (Fundamentals of environmental engineering). Łódź: Wydawnictwo Uniwersytetu Łódzkiego.
  • [5] Kryłów, M., Kwaśny, J., & Balcerzak, W. (2017). Contamination of waters and bottom sediments with PAHs and their derivatives. Literature review. Przemysł Chemiczny, 8, 1695-1698.
  • [7] Alalewi, A., & Chen, S. (2017). Nutrient removal evaluation using the ASM2dModel. Current Journal of Applied Science and Technology, 24(3),1-10.
  • [7] Dudley, J., Buck, G., Ashley, R., &Jack, A. (2002). Experience and extensions to the ASM2 family of models. Water Science & Technology, 45(6), 177-186.
  • [8] Rijn, J., Tal, Y., & Schreier, H. J. (2006). Denitrification in recirculating systems: Theory and applications. Aquacultural Engineering, 34(3), 364-376.
  • [9] Droste, R.L. (1997). Theory and practice of water and wastewater treatment.John Wiley&Sons: New York.
  • [10] Klaczyński ,E., & Ratajczak, P. (2013). Oczyszczalnie ścieków - układy technologiczne (Waste water treatment plants - process systems), Wodociągi i kanalizacja, 4(110), 36-39.
  • [11] Descoins, N., Deleris, S., Lestienne, R., Trouvé, E., & Maréchal, F. (2012). Energy efficiency in wastewater treatments plants: Optimization of activated sludge process coupled with anaerobic digestion. Energy, 41(1), 153-164.
  • [12 Heidrich, Z., & Witkowski, A. (2010). Urządzenia do oczyszczania ścieków. Projektowanie, przykłady obliczeń (Wastewater treatment facilities. Design, calculation examples), Józefosław: Wydawnictwo Seidel- Przywecki Sp. z o.o.
  • [13] Gerksic, S., Vrečko, D., & Hvala, N. (2006). Improving oxygen concentration control in activated sludge process with estimation of respiration and scheduling control. Water Science Technology, 53(4-5), 282-291.
  • [14] Kowalski, S.,Cygnar, M., &Cieślikowski, B. (2020). Analysis of the application of ZrN coatings for the mitigation of the development of fretting wear processes at the surfaces of push fit joint elements. Proceedings Of The Institution Of Mechanical Engineers Part J-Journal Of Engineering Tribology, 234(8),1208-1221.
  • [15] Bischof, F., Durst, F., Hofken, M., Sommerfeld, M. (1994).Theoretical considerations about the development of efficient aeration systems for activated sludge treatment. Aeration Technology: ASME, 187, 27-38.
  • [16] Rosso, D., & Stenstrom, M. K. (2006). Alpha Factors in Full-Scale Wastewater Aeration Systems. Water Environment Federation, 7,4853-4863.
  • [17] Liu, Y., & Tay, J. H. (2001). Strategy for minimization of excess sludge production from the activated sludge process. Biotechnology Advances, 19(2),97-107.
  • [18] Rijn, J., Tal, Y., & Schreier, H. J. (2006). Denitrification in recirculating systems: Theory and applications. Aquacultural Engineering, 34(3), 364-376.
  • [19] Kim, H., Lim, H. Wie, J., Lee I., & Colosimo, M. F. (2014). Optimization of modified ABA2 process using linearized ASM2 for saving aeration energy. Chemical Engineering Journal, 251, 337-342.
  • [20] Lackner, S., Gilbert, E.M, Vlaeminck, S.E., Joss, A., Horn, H., & van Loosdrecht, M.C.M. (2014). Full- scale partial nitritation/anammox experiences - An application survey. Water Research, 55, 292-303.
  • [21] Dyjakon, A., den Boer, J., Szumny, A., & den Boer, E. (2019). Local Energy Use of Biomass from Apple Orchards - An LCA Study. Sustainability, 11(6),1604.
  • [22] Kowalski, S. (2018). Assessment of the possibility of the application of a CrN+OX multi-layer coating to mitigate the development of fretting wear in a pressfit joint. Wear, 398-399, 13-21.
  • [23] Ciuła, J., Gaska, K., Iljuczonek, Ł., Generowicz, A., & Koval, V. (2019). Energy efficiency economics of conversion of biogas from the fermentation of sewage sludge to biomethane as a fuel for automotive vehicles. Architecture Civil Engineering Environment, 12(2), 131-140.
  • [24] Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production, 142(4).
  • [25] Theregowda, R.B., González-Mejía, A.M., Ma, X.C., & Garland, J. (2019). Nutrient Recovery from Municipal Wastewater for Sustainable Food Production Systems: An Alternative to Traditional Fertilizers. Environmental Engineering Science, 36(7).
  • [26] Zubowicz, T., & Brdys, M.A. (2010). Decentralized oxygen control in multi-zone aerobic bioreactor at wastewater treatment plant. IFAC Proceedings Volumes, 43(8), 298-303.
  • [27] Gaska, K., Generowicz, A., Lobur, M., Jaworski, N., Ciuła, J., & Mzyk, T. (2019). Optimization of Biological Wastewater Treatment Process by Hierarchical Adaptive Control. IEEE 15th International Conference on the Perspective Technologies and Methods in MEMS Design, MEM- STECH; 119-122.
  • [28] Dereszewska, A.,& Cytawa, S. (2012). Zastosowanie sondy do pomiaru zawartości azotu amonowego i azotanowego jako elementu sterowania procesem oczyszczania ścieków (Implementation of the ammonium and nitrate sensor as an element of wastewater treatment process control), Ekonomia i zarządzanie, 1, 127-136.
  • [29] Williams, I.D., Curran, T., den Boer, E., Perlt, A., Lock, D., Kent, A., & Wilding, P. (2014). Resource efficiency network in the construction of new buildings. Waste end Resource Management, 167(4), 139-153.
  • [30] Gronba-Chyła, A. M., Generowicz, A., & Kramek, A. (2021). Using Selected Types of Waste to Produce New Light Ceramic Material. Polish Journal of Environmental Studies, 30(3), 2073-2083.
  • [301 Henze, M., Gujer, W., Mino, T., & Loosdrecht, M., (2000). Activated sludge models ASM1, ASM2, ASM2d and ASM3. Technical Report 9. London: International Water Association.
  • [32] Kowalski, S. (2020). Failure analysis of the elements of a forced-in joint operating in rotational bending conditions. Engineering Failure Analysis, 118, 104864.
  • [33] Gronba-Chyła, A. M., & Generowicz, A. (2020). Municipal waste fraction below 10 mm and possibility of its use in ceramic building materials. Przemysł Chemiczny, 99(9), 1318-1321.
  • [34] Brdys, M.A. (2010). Intelligent monitoring and control for critical infrastructure systems and application to integrated wastewater treatment systems. IFAC Proceedings, 43(8), 2-12. https://doi.org/10.3182/20100712-3-FR-2020.00003.
  • [35] Svendsen, N.K., & Wolthusen, S.D. (2017). Connectivity models of interdependency in mixed- type critical infrastructure networks. Information Security Technical Report, 12(1), 44-55.
  • [36] Młyńska, A., Bergel, T., & Młyński, D. (2021). A New Approach to the Maximum Quarterly Water Consumption Modeling on the Example of Individual Water Consumers in a Small Water Supply System. Rocznik Ochrona Środowiska, 23, 180-197.
  • [37] Benchmarking (2019). Wyniki przedsiębiorstw wodociągowo-kanalizacyjnych w Polsce za rok 2018. (Results of water and sewage enterprises in Poland for 2018). Bydgoszcz: Izba Gospodarcza Wodociągowi Polskie.
  • [38] Brdyś, M.A., & Maíquez J.D. (2002): Application of fuzzy model predictive control to the dissolved oxygen concentration tracking in an activated sludge process. 15th Triennial World Congress, Barcelona, Spain.
  • [39] Mueller, J.A., Boyle, W.C., & Pöpel, H.J. (2002). Aeration: Principles and Practice. Boca Raton: CRC Press.
  • [40] Jurczyk, L., Koc-Jurczyk, J., &Balawejder, M. (2019). Quantitative Dynamics of Chosen Bacteria Phylla in Wastewater Treatment Plants Excess Sludge After Ozone Treatment. Journal of Ecological Engineering, 20(3), 204-213.
  • [41] Statistica, version13.3, 2017. TIBCOI Software Inc. USA.
  • [42] Regulation of the Minister of Maritime Affairs and Inland Navigation of 12 July 2019. on substances that are particularly harmful to the aquatic environment and on conditions to be met when discharging waste water into waters or onto the ground, as well as when discharging rainwater or snowmelt into waters or into water facilities. Retrieved from https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001311, [accessed: 07.01.2022].
  • [43] PN-ISO 5667-10:2021-11 (2021). Water quality - Sampling - Part 10: Guideline for sampling waste water.
  • [44] Henze, M., Harremoës, P., Jansen, J., & Arvin, E. (2002). Wastewater treatment. Biological; and chemical processes. Berlin: Springer-Verlag.
  • [45] Al-Sulaiman, A.M., &Khudair B.H. (2018). Correlation between bod5 and cod for al-diwaniyah wastewater treatment plants to obtain the biodigrability indices. Pak. J. Biotechnol. 15(2) 423-427.
  • [46] Han, H., Zhu, S., Qiao, J., & Guo, M. (2018). Data- driven intelligent monitoring system for key variables in wastewater treatment process. Chinese Journal of Chemical Engineering, 26(10), 2093-2101.
  • [47] Chmielowski, K., Rajchel, B., & Karnas, B. (2016). Analysis of operation effectiveness of the “Kujawy” sewage treatement plant. Journal of Civil Engineering, Environment and Architecture, 63, 31-42
  • [48] Chmielowski, K., Młyńska, A., & Młyński, D. (2015). Operational efficiency of wastewater treatment plant in Kolaczyce. Ecological Engineering, 45, 44-50.
  • [49] Katsoyiannis, A., &Samara, C. (2007). The fate of dissolved organic carbon (DOC) in the wastewater treatment process and its importance in the removal of wastewater contaminants. Environmental Science and Pollution Research International, 14, 284-292.
  • [50] Ciuła, J., Kozik, V., Generowicz, A., Gaska, K., Bak, A., Paździor, M., & Barbusiński, K. (2020). Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis. Energies, 13(23), 6254.
  • [51] Chen, Z., Wang, D., Dao, G., Shi, Q., Yu,T., Guo, F., & Wu, G. (2021). Environmental impact of the effluents discharging from full-scale wastewater treatment plants evaluated by a hybrid fuzzy approach. Science of The Total Environment, 790, 148212,
  • [52] Kim, D., Bowen, D., & Ozelkan, E.C. (2015). Optimization of wastewater treatment plant operation for greenhouse gas mitigation. Journal of Environmental Management, 163, 39-48.
  • [53] Rosa, P., Chernicharo, C.L.A., Lobato, L.C.S., Silva, R.V., Padilha, R.F., & Borges, J.M. (2018). Assessing the potential of renewable energy sources (biogas and sludge) in a full-scale UASB-based treatment plant. Renewable Energy, 124, 21-26.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2fc06d46-444a-459c-ad68-d65c2c9d75df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.