Warianty tytułu
Języki publikacji
Abstrakty
The popularity of electrified transportation is rising at a sharp pace due to environmental concerns over internal combustion (IC) engines. Researchers are nowadays looking for a brushless and permanent magnet (PM)-less solution for electric vehicle (EV) motors. Wound-field synchronous motor (WFSM) is a potential solution for EVs and is being used in Renault Zoe EV and BMW iX3 e-Drive models. A Brushless Induction excited Synchronous Motor (BINSYM) is a WFSM where the exciter, an induction machine (IM), is embedded inside the synchronous machine (SM) frame. Two machines (SM and IM) are configured for different numbers of poles to achieve magnetic decoupling, which facilitates independent control of both machines. The purpose of IM is to maintain the excitation requirement of SM. The IM is controlled in deep-plugging mode at a constant slip frequency over the entire speed range to minimise its reactive power demand. The maximum torque per ampere (MTPA) and root mean square (rms) current minimisation algorithms are used to control the SM. Simulation of the BINSYM-based system under dynamic conditions (MTPA with varying field current and load transient) has been carried out in MATLAB/Simulink to validate the control strategies. Experimental findings from the laboratory prototype machine closely match the simulation results.
Czasopismo
Rocznik
Tom
Strony
257--271
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Indian Institute of Technology Kharagpur, Kharagpur, India, amitmondal@ieee.org
autor
- Indian Institute of Technology Delhi, Delhi, India
autor
- Indian Institute of Technology Kharagpur, Kharagpur, India
Bibliografia
- Ali, Q., Lipo, T. A. and Kwon, B. (2015). Design and analysis of a novel brushless wound rotor synchronous machine. In: IEEE International Magnetics Conference (INTERMAG). Beijing, China, p. 1.
- Ayub, M., Hussain, A., Jawad, G. and Kwon, B.-I. (2019). Brushless Operation of a Wound-Field Synchronous Machine Using a Novel Winding Scheme. IEEE Transactions on Magnetics, 55(6), pp. 1–4. doi: 10.1109/TMAG.2019.2893883.
- Boldea, I., Tutelea, L. N., Parsa, L. and Dorrell, D. (2014). Automotive Electric Propulsion Systems with Reduced or No Permanent Magnets: An Overview. IEEE Transactions on Industrial Electronics, 61(10), pp. 5696–5711. doi: 10.1109/TIE.2014.2301754.
- Chakraborty, C. and Bhattacherjee, H. (2023). Synchronous Generator Feeding DC Grid Having Brushless Excitation System With Induction Machine Operating in Deep Plugging Mode. IEEE Transactions on Industrial Electronics, 70(12), pp. 11983–11993. doi: 10.1109/TIE.2023.3239931.
- Chakraborty, C. and Rao, Y. T. (2019). Performance of Brushless Induction Excited Synchronous Generator. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(4), pp. 2571–2582. doi: 10.1109/JESTPE.2018.2881068.
- Dai, J., Hagen, S., Ludois, D. C. and Brown, I. P. (2017). Synchronous Generator Brushless Field Excitation and Voltage Regulation via Capacitive Coupling through Journal Bearings. IEEE Transactions on Industry Applications, 53(4), pp. 3317–3326. doi: 10.1109/TIA.2017.2681621.
- Dash, S. K., Medam, V. and Chakraborty, C. (2020). Speed control of brushless induction excited synchronous motor (BINSYM). In: IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). Jaipur, India, pp. 1–6.
- Deriszadeh, A., Calasan, M. P., Alaei, A. and Gieras, J. F. (2022). A Novel Field Current Estimation 270 Method for Brushless Wound-Field Synchronous Machine. IEEE Transactions on Transportation Electrification, 8(3), pp. 3524–3533. doi: 10.1109/TTE.2022.3162173.
- Fu, X., Qi, Q. and Tan, L. (2019). Design and Analysis of Brushless Wound Field Synchronous Machine with Electro-Magnetic Coupling Resonators. IEEE Access, 7, pp. 173636–173645. doi: 10.1109/ACCESS.2019.2957133.
- Kimiabeigi, M., Widmer, J. D., Baker, N. J., Martin, R., Mecrow, B. C. and Michaelides, A. (2016). ThreeDimensional Modelling of Demagnetization and Utilization of Poorer Magnet Materials for EV/ HEV Applications. IEEE Transactions on Energy Conversion, 31(3), pp. 981–992. doi: 10.1109/TEC.2016.2555786.
- Lee, C. H. T., Hua, W., Long, T., Jiang, C. and Iyer, L. V. (2021). A Critical Review of Emerging Technologies for Electric and Hybrid Vehicles. IEEE Open Journal of Vehicular Technology, 2, pp. 471–485. doi: 10.1109/OJVT.2021.3138894.
- Nøland, J. K., Nuzzo, S., Tessarolo, A. and Alves, E. F. (2019). Excitation System Technologies for WoundField Synchronous Machines: Survey of Solutions and Evolving Trends. IEEE Access, 7, pp. 109699109718. doi: 10.1109/ACCESS.2019.2933493.
- Park, H.-J. and Lim, M.-S. (2019). Design of High Power Density and High Efficiency Wound-Field Synchronous Motor for Electric Vehicle Traction. IEEE Access, 7, pp. 46677–46685. doi: 10.1109/ACCESS.2019.2907800.
- Pellegrino, G., Vagati, A., Guglielmi, P. and Boazzo, B. (2012). Performance Comparison Between Surface-Mounted and Interior PM Motor Drives for Electric Vehicle Application. IEEE Transactions on Industrial Electronics, 59(2), pp. 803–811. doi: 10.1109/TIE.2011.2151825.
- Raminosoa, T., El-Refaie, A. M., Torrey, D. A., Grace, K., Pan, D., Grubic, S., Bodla, K. and Huh, K.K. (2017). Test Results for a High Temperature Non-Permanent-Magnet Traction Motor. IEEE Transactions on Industry Applications, 53(4), pp. 3496–3504. doi: 10.1109/TIA.2017.2687870.
- Rao, Y. T., Chakraborty, C. and Sengupta, S. (2021). Performance and Stability of Brushless Induction Excited Synchronous Generator Operating in SelfExcited Mode for Wind Energy Conversion System. IEEE Transactions on Energy Conversion, 36(2), pp. 919–929. doi: 10.1109/TEC.2020.3023960.
- Wang, R., Liu, W., Meng, T., Jiao, N., Han, X., Sun, C. and Yang, Y. (2022). Rotor Position Estimation Method Of Brushless Electrically Excited Synchronous Starter/Generator Based on Multistage Structure. IEEE Transactions on Power Electronics, 37(1), pp. 364–376. doi: 10.1109/TPEL.2021.3100361.
- Wang, Z., Ching, T. W., Huang, S., Wang, H. and Xu, T. (2021). Challenges Faced by Electric Vehicle Motors and Their Solutions. IEEE Access, 9, 52285249. doi: 10.1109/ACCESS.2020.3045716.
- Wang, Z., Lu, K. and Blaabjerg, F. (2012). A Simple Startup Strategy Based on Current Regulation for Back-EMF-Based Sensorless Control of PMSM. IEEE Transactions on Power Electronics, 27(8), pp. 3817–3825. doi: 10.1109/TPEL.2012.2186464.
- Widmer, J. D., Martin, R. and Kimiabeigi, M. (2015). Electric Vehicle Traction Motors without Rare Earth Magnets. Sustainability of Materials and Technology, 3, pp. 7–13. doi: 10.1016/j.susmat.2015.02.001.
- Yao, F., An, Q., Gao, X., Sun, L. and Lipo, T. A. (2015). Principle of Operation and Performance of a Synchronous Machine Employing a New Harmonic Excitation Scheme. IEEE Transactions on Industry Applications, 51(5), pp. 3890–3898. doi: 10.1109/TIA.2015.2425363.
- Yao, F., An, Q., Sun, L. and Lipo, T. A. (2016). Performance Investigation of a Brushless Synchronous Machine With Additional Harmonic Field Windings. IEEE Transactions on Industrial Electronics, 63(11), pp. 6756–6766. doi: 10.1109/TIE.2016.2581759.
- Zhang, X., Jiao, N., Mao, S., Liu, W. and Fan, Y. (2023). Rotor Position Estimation Method Based on Harmonic Signal for a Wound-Field Synchronous Starter/Generator in the Low-Speed Region. IEEE Transactions on Power Electronics, 38(4), pp. 4493–4502. doi: 10.1109/TPEL.2022.3230509.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2fa532ab-9a0a-47b3-9bd4-0321a4d5569c