Czasopismo
2019
|
R. 24/86, nr 1
|
56--67
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
The influence of lithium compounds on alkali–silica reaction in calcium aluminate cement mortars subjected to the deicing salts attack
Języki publikacji
Abstrakty
W artykule przedstawiono wyniki badań wpływu dodatku azotanu oraz węglanu litu na reakcję krzemionki ze związkami sodu w zaprawach z cementu glinowego, poddanych działaniu soli odladzających. Zaprawy z dodatkiem szkła kwarcowego, jako kruszywa reaktywnego poddawane były działaniu 4,5 molowych roztworów octanu, chlorku, wodorotlenku sodu według zmodyfikowanej metody ASTM C1260. We wszystkich przypadkach zaprawy wykazywały ekspansję największą dla próbek przechowywanych w roztworze octanu, najmniejszą zaś w przypadku próbek przechowywanych w wodorotlenku. Dodatek 1% węglanu litu w stosunku do masy cementu nieznacznie zmniejsza ekspansję zapraw w obu tych roztworach, natomiast dodatek 1,86% i 3,73% azotanu litu zwiększa tę ekspansję. Dodatek 1,86% azotanu litu zmniejsza ekspansję zaprawy przechowywanej w roztworze wodorotlenku sodu, a dodatek 3,73% azotanu litu zwiększa ekspansję tej zaprawy. W pracy opisano również wpływ związków litu na zmiany mikrostruktury zapraw.
Paper presents the results of research on the effect of the lithium nitrate and carbonate addition on the alkali - silica reaction in calcium aluminate cement mortars, subjected to the a deicing salts attack. Mortars with the addition of quartz glass as the reactive aggregate were immersed in 4.5 molar sodium acetate, chloride and hydroxide solutions according to the modified ASTM C1260 method. In all cases, the mortars exhibited expansion, the highest for samples immersed in the acetate solution, and the lowest in the hydroxide solution. The addition of 1% of lithium carbonate in respect to the cement mass slightly reduces the expansion of mortars immersed in sodium acetate and hydroxide solutions. The addition of 1.86% and 3.73% of lithium nitrate increases the expansion of mortars immersed in both solutions. The addition of 1.86% lithium nitrate reduces the expansion of the mortar stored in sodium hydroxide solution, while 3.73% of this addition increases the expansion of this mortar. Changes in the microstructure were also presented.
Czasopismo
Rocznik
Tom
Strony
56--67
Opis fizyczny
Bibliogr. 41 poz., il., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Building Materials Technology, Kraków, Poland, lkotwica@agh.edu.pl
autor
- BARG Laboratorium Budowlane Sp. z o.o., Kraków, Poland
Bibliografia
- 1. T. E. Stanton, Expansion of concrete through reaction between cement and aggregate. Proc. Am. Soc. Civ. Eng. 66 1781-1811 (1940).
- 2. F. Rajabipour, E. Giannini, C. Dunant, J. H. Ideker, M. D. Thomas. Alkali-silica reaction: current understanding of the reaction mechanisms and the knowledge gaps. Cem. Concr. Res. 76. 130-146 (2015).
- 3. W. Kurdowski. Cement and Concrete Chemistry. Springer. Dordrecht. Heidelberg 2013.
- 4. F.P. Glasser, Chemistry of the alkali – aggregate reaction. w red. R.N. Swamy, The Alkali – Silica Reaction in Concrete, Blackie, Glasgow, London, Van Nostrand Reinhold. New York, 1992.
- 5. S. Diamond, R. S. Barneyback, L. J. Struble. On the physics and chemistry of alkali-silica reactions. 5th Int. Conf. Alkali-Agg. Reac. Cape Town 1981.
- 6. N. Thaulow, M. Geiker. Determination of the residual reactivity of alkali silica reaction in concrete. 9th Int. Conf. Alkali-Aggr. React. Concr. London 1992. v. 2. 2150-2158; cytowane za (7).
- 7. M. Thomas. The role of calcium hydroxide in alkali recycling in concrete. (red. J. Skalny, J. Gebauer, I. Odler) w Materials Science of Concrete: Calcium Hydroxide in Concrete. Wiley-Blackwell. 2001.
- 8. S. Chatterjee, N. Thaulow, A. D. Jensen. Studies of Alkali-Silica Reaction. Part 4. Effect of different salt solutions on expansion. Cem. Concr. Res., 17. 777-783 (1987).
- 9. S. Chatterjee, A. D. Jensen, N. Thaulow, S. Christensen. Studies of alkali-silica reaction. Part 3. Mechanism by Which NaCl and Ca(OH)2 Affect the Reaction. Cem. Concr. Res., 16, 246-254 (1986).
- 10. A. Heisig, L. Urbonas, R. E. Beddoe, D. Heinz. Ingress of NaCl in concrete with alkali reactive aggregate: effect on silicon solubility. Mater. Struct., 49, 4291-4303 (2016).
- 11. S. Diamond, Ł. Kotwica, J. Olek, P. R. Rangaraju, J. Lovell, B. Fournier. Chemical aspects of severe ASR induced by potassium acetate airfield pavement de-icer solution. Proc. Marc-Andre Berube Symposium on Alkali-Aggregate Reactivity in Concrete. 261-279 (2006).
- 12. P. R. Rangaraju, J. Olek. Potential for acceleration of ASR in presence of pavement deicing chemicals. IPRF (Innovative Pavement Research Foundation) Research Report. No. 01-G-002-03-92007
- 13. P. R. Rangaraju, K. R. Sompura, J. Olek. Investigation into Potential of Alkali–Acetate–Based Deicers to Cause Alkali-Silica Reaction in Concrete. Transp. Res. Rec. 1979 69-78. (2006).
- 14. P. R. Rangaraju, K. R. Sompura, J. Olek. An Investigation into Deicer-Induced ASR Distress in Concrete. Proc. Int. Symp. Brittle Matrix Composites 8. (red.) A.M. Brandt. V. C. Li and I. M. Marshall. Warsaw. 2006.
- 15. S. Math, D. Wingard, P. R. Rangaraju. Assessing Potential Reactivity of Aggregates in Presence of Potassium Acetate Deicer Revised Mortar Bar Test Method. Transp. Res. Rec., 2232. (2001).
- 16. C. Giebson, K. Seyfarth, J. Stark. Influence of acetate and formate-based deicers on ASR in airfield concrete pavements. Cem. Concr. Res., 40. 537-545 (2010).
- 17. S. Chatterjee, The Role of Ca(OH)2 in the breakdown of Portland cement concrete due to alkali-silica reaction. Cem. Concr. Res., 9. 185-188 (1979).
- 18. H. Wang, J. E. Gillott. Mechanism of alkali-silica reaction and the significance of calcium hydroxide. Cem. Concr. Res., 21. 647-654 (1991).
- 19. Ł. Kotwica. M. Malich. Alkali-silica reaction in calcium aluminate cement mortars due to the action of deicing salts. submitted to Cem. Concr. Res. (2018).
- 20. M. D. A. Thomas. The effect of supplementary cementing materials on alkali-silica reaction: a review. Cem. Concr. Res., 41, 1124-1131 (2011).
- 21. A. K. Saha, M. N. N. Khan, P. K. Sarker, F. A. Shaikh, A. Pramanik. The ASR mechanism of reactive aggregates in concrete and its mitigation by fly ash: A critical review. Constr. Build. Mater., 171, 743-758 (2018).
- 22. S. M. H. Shafaatian. A. Akhavan. H. Maraghechi. F. Rajabipour. How does fly ash mitigate alkali-silica reaction (ASR) in accelerated mortar bar test (ASTM C1567). Cem. Concr. Comp., 37, 143-153 (2013).
- 23. P. Czapik, Z. Owsiak. Effect of zeolite exposed to ion-exchange with ammonium chloride on reaction of sodium and potassium hydroxides with gravel aggregate. Cement Wapno Beton, 21. 79-85 (2016).
- 24. W. Aquino, D. A. Lange, J. Olek. The influence of metakaolin and silica fume on the chemistry of alkali–silica reaction products. Cem. Concr. Compos., 23. 485-493 (2001).
- 25. Ł. Kotwica, M. Fular. Influence of ground waste expanded perlite on the reaction of siliceous aggregates with sodium and potassium hydroxides. Cement Wapno Beton, 23. 414-423 (2018)
- 26. X. Feng, M. D. A. Thomas, T. W. Bremner, B. J. Balcom. Studies on lithium salts to mitigate ASR-induced expansion in new concrete: a critical review. Cem. Conc. Res., 35. 1789-1796 (2005).
- 27. Z. Owsiak, J. Zapała–Sławeta. The lithium nitrate effect on the concrete expansion caused by alkali-silica reaction in concrete of gravel aggregate. Cement Wapno Beton. 82. 25-31 (2015).
- 28. K. Quilllin, G. Osborne, A. Majumdar, B. Singh. “Effect of w/c ratio and curing conditions on strength development in BRECEM concretes”, Cem. Concr. Res., 31. 627-632 (2001).
- 29. K. Quilllin, G. Osborne, A. Majumdar, B. Singh. “Properties of BRECEM. Ten-year results” Cem. Concr. Res., 29. 429-433 (1999).
- 30. Ö. Kırca, O. Yaman, M. Tokyay. Compressive strength development of calcium aluminate cement–GGBFS blends. Cem. Concr. Comp., 35, 163-170 (2013).
- 31. G. Puerta-Falla, A. Kumar, L. Gomez-Zamorano, M. Bauchy, N. Neithalath, G. Sant, “The influence of filler type and surface area on the hydration rates of calcium aluminate cement” Constr. Build. Mater., 96. 657-665 (2015).
- 32. Ł. Kotwica, P. Łapka. The influence of mineral additives on properties of calcium aluminate cement mortars. Cement Wapno Beton, 83, 198-191 (2016).
- 33. H. F. W. Taylor, Cement Chemistry 2nd ed. Thomas Telford, London 1997.
- 34. M. Niziurska, J. Małolepszy. The influence of lithium carbonate on the properties of calcium aluminate cement. Cement Wapno Beton, 81, 275-281 (2014).
- 35. M. Murat, H. Sadok. Role of foreign cations in solution on the hydration kinetics of high alumina cement. w Calcium Aluminate Cements. R. J. Mangabhai (ed.). E&F.N. Spoon. London 1990.
- 36. D. C. Stark. Lithium salt admixtures—an alternative method to prevent expansive alkali–silica reactivity. Proc. 9th Int. Conf. on Alkali–Aggregate Reaction. Concrete Society of U.K. London. 1992 [quoted in (26)].
- 37. D. C. Stark, B. Morgan, P. Okamoto, S. Diamond. Eliminating or Minimizing Alkali–Silica Reactivity. National Research Council. Washington. DC. 1993. SHRP-C-343 [quoted in (26)].
- 38. S. Diamond, S. Ong. The mechanisms of lithium effects on ASR. Proc. 9th Int. Conf. on Alkali–Aggregate Reaction. Concrete Society of U.K. London. 1992 [quoted in (26)].
- 39. D. B. Stokes, H. H. Wang, S. Diamond. A Lithium-based admixture for ASR control that does not increase the pore solution pH. Proc. 5th CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete. SP-173. 855-867 (1997).
- 40. C. Tremblay, M. A. Bérubé, B. Fournier, M. D. Thomas, K. J. Folliard, Experimental investigation of the mechanisms by which LiNO3 is effective against ASR. Cem. Concr. Res., 40. 583-597 (2010).
- 41. P. R. Rangaraju, Mitigation of ASR in presence of pavement deicing chemicals. Innovative Pavement Research Foundation Report IPRF-01-G-002-04-8 (2007).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2f925007-feac-4a22-89ae-a78023ce5e7d