Warianty tytułu
Języki publikacji
Abstrakty
An electrocardiogram (ECG) is an essential medical tool for analyzing the functioning of the heart. An arrhythmia is a deviation in the shape of the ECG signal from the normal sinus rhythm. Long-term arrhythmias are the primary sources of cardiac disorders. Shockable arrhythmias, a type of life-threatening arrhythmia in cardiac patients, are characterized by disorganized or chaotic electrical activity in the heart’s lower chambers (ventricles), disrupting blood flow throughout the body. This condition may lead to sudden cardiac arrest in most patients. Therefore, detecting and classifying shockable arrhythmias is crucial for prompt defibrillation. In this work, various machine and deep learning algorithms from the literature are analyzed and summarized, which is helpful in automatic classification of shockable arrhythmias. Additionally, the advantages of these methods are compared with existing traditional unsupervised methods. The importance of digital signal processing techniques based on feature extraction, feature selection, and optimization is also discussed at various stages. Finally, available databases, the performance of automated algorithms, limitations, and the scope for future research are analyzed. This review encourages researchers’ interest in this challenging topic and provides a broad overview of its latest developments.
Rocznik
Tom
Strony
485--511
Opis fizyczny
Bibliogr. 171 poz., rys., tab., wykr.
Twórcy
autor
- School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
autor
- School of Electronics Engineering, VIT-AP University, Inavolu, Amaravati, Andhra Pradesh, 522241, India
autor
- School of Electronics Engineering, VIT-AP University, Inavolu, Amaravati, Andhra Pradesh, 522241, India
autor
- School of Computer Science and Engineering (SCOPE), Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
autor
- Department of Electronics and Communication Engineering, Aditya Institute of Technology and Management, Tekkali, Andhra Pradesh, 532201, India
autor
- School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
autor
- Department of Biocybernetics and Biomedical Engineering, AGH University of Krakow, Mickiewicza 30, 30-059 Kraków, Poland
autor
- Department of Computer Science, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland, pawel.plawiak@pk.edu.pl
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
Bibliografia
- [1] Acharya, U.R., Fujita, H., Lih, S., Raghavendra, U. and Hong, J. (2018). Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network, Future Generation Computer Systems 79(1): 952-959.
- [2] Alonso-Atienza, F., Morgado, E., Fernandez-Martinez, L., Garcia-Alberola, A. and Rojo-Alvarez, J. (2012a). Combination of ECG parameters with support vector machines for the detection of life-threatening arrhythmias, Computers in Cardiology (2010) 39(1): 385-388.
- [3] Alonso-Atienza, F., Morgado, E., Fernandez-Martinez, L., Garcia-Alberola, A. and Rojo-Alvarez, J. (2014). Detection of life-threatening arrhythmias using feature selection and support vector machines, IEEE Transactions on Biomedical Engineering 61(3): 832-840.
- [4] Alonso-Atienza, F., Rojo-Álvarez, J., Rosado-Muñoz, A., Vinagre, J., Garcia-Alberola, A. and Camps-Valls, G. (2012b). Feature selection using support vector machines and bootstrap methods for ventricular fibrillation detection, Expert Systems with Applications 39(2): 1956-1967.
- [5] Amann, A., Tratnig, R. and Unterkofler, K. (2005a). A new ventricular fibrillation detection algorithm for automated external defibrillators, Computers in Cardiology, 2005, Lyon, France, pp. 559-562.
- [6] Amann, A., Tratnig, R. and Unterkofler, K. (2005b). Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators, Biomedical Engineering Online 4(1): 1-15.
- [7] Amann, A., Tratnig, R. and Unterkofler, K. (2007). Detecting ventricular fibrillation by time-delay methods, IEEE Transactions on Biomedical Engineering 54(1): 174-177.
- [8] Anas, E., Lee, S. and Hasan, M. (2011). Exploiting correlation of ECG with certain EMD functions for discrimination of ventricular fibrillation, Computers in Biology and Medicine 41(2): 110-114.
- [9] Anas, E.M.A., Lee, S.Y. and Hasan, M.K. (2010). Sequential algorithm for life-threatening cardiac pathologies detection based on mean signal strength and EMD functions, Biomedical Engineering Online 9(1): 1-22.
- [10] Andersen, R.S., Peimankar, A. and Puthusserypady, S. (2019). A deep learning approach for real-time detection of atrial fibrillation, Expert Systems with Applications 115(1): 465-473.
- [11] Arafat, M.A., Chowdhury, A.W. and Hasan, M.K. (2011). A simple time domain algorithm for the detection of ventricular fibrillation in electrocardiogram, Signal, Image Video Processing 5(1): 1-10.
- [12] Arafat, M.A., Sieed, J. and Hasan, M.K. (2009). Detection of ventricular fibrillation using empirical mode decomposition and Bayes decision theory, Computers in Biology and Medicine 39(11): 1051-1057.
- [13] Ari, S., Das, M.K. and Chacko, A. (2013). ECG signal enhancement using s-transform, Computers in Biology and Medicine 43(6): 649-660.
- [14] Balasundaram, K., Masse, S., Nair, K. and Umapathy, K. (2013). Automated signal pattern detection in ECG during human ventricular arrhythmias, Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, pp. 1029-1032.
- [15] Bergstra, J., Bardenet, R., Bengio, Y. and Kégl, B. (2011). Algorithms for hyper-parameter optimization, in J. Shawe-Taylor et al., Advances in Neural Information Processing Systems, Vol. 24, Curran Associates, Red Hook, pp. 1-9.
- [16] Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization, Journal of Machine Learning Research 13(2): 281-305.
- [17] Blum, C., Puchinger, J., Raidl, G.R. and Roli, A. (2011). Hybrid metaheuristics in combinatorial optimization: A survey, Applied Soft Computing 11(6): 4135-4151.
- [18] Boston Scientific (2024). What is ventricular arrhythmia?, https://www.bostonscientific.com/en-IN/health-conditions/ventricular-arrhythmias/description.html.
- [19] Cai, L., Lv, S. and Shi, K. (2021). Application of an improved chi feature selection algorithm, Discrete Dynamics in Nature and Society 2021(1): 9963382.
- [20] Chakraborty, A. and Kar, A.K. (2017). Swarm intelligence: A review of algorithms, Nature-Inspired Computing and Optimization: Theory and Applications 10(1): 475-494.
- [21] Chen, H., Das, S., Morgan, J. and Maharatna, K. (2022). Prediction and classification of ventricular arrhythmia based on phase-space reconstruction and fuzzy c-means clustering, Computers in Biology and Medicine 142(1): 105180.
- [22] Chen, M.M., Thakor, N. and Mower (1987). Ventricular fibrillation detection by a regression test on the autocorrelation function, Medical and Biological Engineering and Computing 25(3): 241-249.
- [23] Chen, S. (2000). A two-stage discrimination of cardiac arrhythmias using a total least squares-based prony modeling algorithm, IEEE Transactions on Biomedical Engineering 47(10): 1317-1327.
- [24] Chen, S.W., Clarkson, P.M. and Fan, Q. (1996). A robust sequential detection algorithm for cardiac arrhythmia classification, IEEE Transactions on Biomedical Engineering 43(11): 1120-1125.
- [25] Christov, I., Gómez-Herrero, G., Krasteva, V., Jekova, I., Gotchev, A. and Egiazarian, K. (2006). Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification, Medical Engineering & Physics 28(9): 876-887.
- [26] Claesen, M. and De Moor, B. (2015). Hyperparameter search in machine learning, arXiv: 1502.02127.
- [27] Clayton, R.H. and Murray, A. (1999). Linear and non-linear analysis of the surface electrocardiogram during human ventricular fibrillation shows evidence of order in the underlying mechanism, Medical & Biological Engineering & Computing 37(3): 354-358.
- [28] Clayton, R.H., Murray, A. and Campbell, R.W. (1993). Comparison of four techniques for recognition of ventricular fibrillation from the surface ECG, Medical and Biological Engineering and Computing 31(1): 111-117.
- [29] Cuevas, E., Osuna, V. and Oliva, D. (2017). Evolutionary Computation Techniques: A Comparative Perspective, Springer, Berlin.
- [30] Dahal, K. and Ali, M.H. (2022). Overview of machine learning and deep learning approaches for detecting shockable rhythms in AED in the absence or presence of CPR, Electronics 11(21): 13593.
- [31] Dahal, K. and Ali, M.H. (2023). A hybrid GAN-based DL approach for the automatic detection of shockable rhythms in AED for solving imbalanced data problems, Electronics 12(1): 13.
- [32] de Luna, A.B., Coumel, P. and Leclercq, J.F. (1989). Ambulatory sudden cardiac death: Mechanisms of production of fatal arrhythmia on the basis of data from 157 cases, American Heart Journal 117(1): 151-159.
- [33] Decastro-Garcia, N., Munoz Castaneda, A.L., Escudero Garcia, D. and Carriegos, M.V. (2019). Effect of the sampling of a dataset in the hyperparameter optimization phase over the efficiency of a machine learning algorithm, Complexity 2019(1): 6278908.
- [34] Desai, Patel and Prajapati (2016). Anova and Fisher criterion based feature selection for lower dimensional universal image steganalysis, International Journal of Image Processing 10(3): 145-160.
- [35] Didon, J.-P., Krasteva, V., Ménétré, S., Stoyanov, T. and Jekova, I. (2011). Shock advisory system with minimal delay triggering after end of chest compressions: Accuracy and gained hands-off time, Resuscitation 82(1): S8-S15.
- [36] Didon, J.-P., Ménétré, S., Jekova, I., Stoyanov, T. and Krasteva, V. (2021). Analyze whilst compressing algorithm for detection of ventricular fibrillation during CPR: A comparative performance evaluation for automated external defibrillators, Resuscitation 160(1): 94-102.
- [37] Dinakarrao, S.M.P., Jantsch, A. and Shafique, M. (2020). Computer-aided arrhythmia diagnosis with bio-signal processing, ACM Computing Surveys (CSUR) 52(2): 1-37.
- [38] Dutta, S., Chatterjee, A. and Munshi, S. (2011). Identification of ECG beats from cross-spectrum information aided learning vector quantization, Measurement 44(10): 2020-2027.
- [39] Ebrahimzadeh, E. and Pooyan, M. (2011). Early detection of sudden cardiac death by using classical linear techniques and time-frequency methods on electrocardiogram signals, Journal of Biomedical Science and Engineering 04(11): 699-706.
- [40] Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H. and Leyton-Brown, K. (2013). Towards an empirical foundation for assessing Bayesian optimization of hyperparameters, NIPS Workshop on Bayesian Optimization in Theory and Practice, Lake Tahoe, USA, pp. 1-5.
- [41] Eilevstjønn, J., Eftestøl, T., Aase, S.O., Myklebust, H., Husøy, J.H. and Steen, P.A. (2004). Feasibility of shock advice analysis during CPR through removal of CPR artefacts from the human ECG, Resuscitation 61(2): 131-141.
- [42] Elola, A., Aramendi, E., Irusta, U., Picón, A., Alonso, E., Owens, P. and Idris, A. (2019). Deep neural networks for ECG-based pulse detection during out-of-hospital cardiac arrest, Entropy 21(3): 305.
- [43] Figuera, C., Irusta, U., Morgado, E., Aramendi, E., Ayala, U., Wik, L., Kramer-Johansen, J., Eftestøl, T. and Alonso-Atienza, F. (2016). Machine learning techniques for the detection of shockable rhythms in automated external defibrillators, PLoS One 11(7): 1-17.
- [44] Fumagalli, F., Silver, A.E., Tan, Q., Zaidi, N. and Ristagno, G. (2018). Cardiac rhythm analysis during ongoing cardiopulmonary resuscitation using the analysis during compressions with fast reconfirmation technology, Heart Rhythm 15(2): 248-255.
- [45] Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K. and Stanley, H.E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals, Circulation 101(23): e215-e220.
- [46] Gong, Y., Gao, P., Wei, L., Dai, C., Zhang, L. and Li, Y. (2016). An enhanced adaptive filtering method for suppressing cardiopulmonary resuscitation artifact, IEEE Transactions on Biomedical Engineering 64(2): 471-478.
- [47] Gong, Y., Gao, P., Wei, L., Dai, C., Zhang, L. and Li, Y. (2017). An enhanced adaptive filtering method for suppressing cardiopulmonary resuscitation artifact, IEEE Transactions on Biomedical Engineering 64(2): 471-478.
- [48] Greenwald, S.D. (1986). The Development and Analysis of a Ventricular Fibrillation Detector, PhD thesis, Massachusetts Institute of Technology, Cambridge.
- [49] Hajeb-M, S., Cascella, A., Valentine, M. and Chon, K.H. (2022). Enhancing the accuracy of shock advisory algorithms in automated external defibrillators during ongoing cardiopulmonary resuscitation using a deep convolutional encoder-decoder filtering model, Expert Systems with Applications 203(April): 117499.
- [50] Hajeb-Mohammadalipour, S., Cascella, A., Valentine, M. and Chon, K.H. (2021). Automated condition-based suppression of the CPR artifact in ECG data to make a reliable shock decision for AEDs during CPR, Sensors 21(24): 8210.
- [51] Hammad, M., Kandala, R.N., Abdelatey, A., Abdar, M., Zomorodi-Moghadam, M., San Tan, R., Acharya, U.R., Pławiak, J., Tadeusiewicz, R., Makarenkov, V. and Sarrafzadegan N. (2021). Automated detection of shockable ECG signals: A review, Information Sciences 571(1): 580-604.
- [52] Hammad, M. Abd El-Latif, A.A., Hussain, A., Abd El-Samie, F.E., Gupta, B.B., Ugail, H. and Sedik, A. (2022). Deep learning models for arrhythmia detection in IoT healthcare applications, Computers & Electrical Engineering 100(September): 108011.
- [53] Han, S., Eom, H., Kim, J. and Park, C. (2020). Optimal DNN architecture search using Bayesian optimization hyperband for arrhythmia detection, 2020 IEEE Wireless Power Transfer Conference (WPTC), Seoul, Korea, pp. 357-360.
- [54] Haupt, R.L. and Haupt, S.E. (2004). Practical Genetic Algorithms, John Wiley & Sons, Englewood Cliffs.
- [55] Hou, Z. and Zhang, Y. (2014). Ventricular fibrillation detection by an improved time domain algorithm combined with SVM, 2014 International Conference on Medical Biometrics (ICMB), Shenzhen, China, pp. 189-194.
- [56] Hu, Y., Tang, H., Liu, C., Jing, D., Zhu, H., Zhang, Y., Yu, X., Zhang, G. and Xu, J. (2019). The performance of a new shock advisory algorithm to reduce interruptions during cpr, Resuscitation 143(1): 1-9.
- [57] Huang, J., Chen, B., Yao, B. and He, W. (2019). ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network, IEEE Access 7(1): 92871-92880.
- [58] Ibaida, A. and Khalil, I. (2013). Distinguishing between ventricular tachycardia and ventricular fibrillation from compressed ECG signal in wireless body sensor networks, 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Buenos Aires, Argentina, pp. 2013-2016.
- [59] Ibtehaz, N., Rahman, M.S. and Rahman, M.S. (2019). VFPred: A fusion of signal processing and machine learning techniques in detecting ventricular fibrillation from ECG signals, Biomedical Signal Processing and Control 49(1): 349-359.
- [60] Ilankumaran, V. and Thamaraiselvi, S. (2011). Ventricular arrhythmias detection using wavelet decomposition, International Journal of Computer Applications 20(1): 11-18.
- [61] Irusta, U., Ruiz, J., de Gauna, S.R., Eftestøl, T. and Kramer-Johansen, J. (2009). A least mean-square filter for the estimation of the cardiopulmonary resuscitation artifact based on the frequency of the compressions, IEEE Transactions on Biomedical Engineering 56(4): 1052-1062.
- [62] Isasi Liñero, I., Irusta Zarandona, U., Aramendi Ecenarro, E., Eftestøl, T., Kramer Johansen, J. and Wik, L. (2020). Rhythm analysis during cardiopulmonary resuscitation using convolutional neural networks, Entropy 22(6): 595.
- [63] Islam, R. (2021). Purkinje fibers: Anatomy, location & function, Anatomy Info, https://anatomyinfo.com/purkinje-fibers/.
- [64] Jaddi, N.S. and Abdullah, S. (2020). Global search in single-solution-based metaheuristics, Data Technologies and Applications 54(3): 275-296.
- [65] Jaureguibeitia, X., Zubia, G., Irusta, U., Aramendi, E., Chicote, B., Alonso, D., Larrea, A. and Corcuera, C. (2020). Shock decision algorithms for automated external defibrillators based on convolutional networks, IEEE Access 8(1): 154746-154758.
- [66] Jekova, I. and Krasteva, V. (2004). Real time detection of ventricular fibrillation and tachycardia, Physiological Measurement 25(5): 1167-1178.
- [67] Jekova, I. and Krasteva, V. (2021). Optimization of end-to-end convolutional neural networks for analysis of out-of-hospital cardiac arrest rhythms during cardiopulmonary resuscitation, Sensors 21(12): 4105.
- [68] John, R.M., Tedrow, U.B., Koplan, B.A., Albert, C.M., Epstein, L.M., Sweeney, M.O., Miller, A.L., Michaud, G.F. and Stevenson, W.G. (2012). Ventricular arrhythmias and sudden cardiac death, Lancet 380(9852): 1520-1529.
- [69] Josephson, M.E. and Wellens, H.J.J. (2004). Implantable defibrillators and sudden cardiac death, Circulation 109(22): 2685-2691.
- [70] Jung, Y. and Tompkins, W. (2003). Detecting and classifying life-threatening ECG ventricular arrhythmias using wavelet decomposition, Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Cancun, Mexico, Vol. 3, pp. 2390-2393.
- [71] Kabir, M.A. and Shahnaz, C. (2012). Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains, Biomedical Signal Processing and Control 7(5): 481-489.
- [72] Kaliappan, M., Manimegalai Govindan, S. and Kuppusamy, M.S. (2022). Automatic ECG analysis system with hybrid optimization algorithm based feature selection and classifier, Journal of Intelligent & Fuzzy Systems 43(1): 627-642.
- [73] Kandukuri, U.R., Prakash, A.J., Patro, K.K., Neelapu, B.C., Tadeusiewicz, R. and Pławiak, P. (2023). Constant Q-transform-based deep learning architecture for detection of obstructive sleep apnea, International Journal of Applied Mathematics and Computer Science 33(3): 493-506, DOI: 10.34768/amcs-2023-0036.
- [74] Karaboğa, D. and Ökdem, S. (2004). A simple and global optimization algorithm for engineering problems: Differential evolution algorithm, Turkish Journal of Electrical Engineering and Computer Sciences 12(1): 53-60.
- [75] Karthiga, M., Santhi, V. and Sountharrajan, S. (2022). Hybrid optimized convolutional neural network for efficient classification of ECG signals in healthcare monitoring, Biomedical Signal Processing and Control 76(1): 103731.
- [76] Katoch, S., Chauhan, S.S. and Kumar, V. (2021). A review on genetic algorithm: Past, present, and future, Multimedia Tools and Applications 80(1): 8091-8126.
- [77] Kaur, L. and Singh, V. (2013). Ventricular fibrillation detection using empirical mode decomposition and approximate entropy, International Journal of Emerging Technology and Advanced Engineering 3(5): 260-268.
- [78] Kavya, L. and Karuna, Y. (2023). Shockable arrhythmia detection using sequential minimal optimization, and support vector machine, 2023 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, pp. 1-5.
- [79] Kavya, L. and Karuna, Y. (2024). Dwarf mongoose gannet optimization algorithm-enabled deep neuro-fuzzy network for detection of shockable ventricular cardiac arrhythmias, Proceedings of the Institution of Mechanical Engineers C: Journal of Mechanical Engineering Science 238(13): 09544062231221003.
- [80] Khadra, L., Al-Fahoum, A. and Al-Nashash, H. (1997). Detection of life-threatening cardiac arrhythmias using the wavelet transformation, Medical & Biological Engineering & Computing 35(6): 626-632.
- [81] Kinoshita, H., Yoshizawa, M., Inagaki, M., Uemura, K., Sugimachi, M. and Sunagawa, K. (2006). Development of an algorithm for detection of fatal cardiac arrhythmia for implantable cardioverter-defibrillator using a self-organizing map, IEEE International Conference on Engineering in Medicine and Biology Society, New York, USA, p. 4370-4373.
- [82] Kora, P., Abraham, A. and Meenakshi, K. (2020). Heart disease detection using hybrid of bacterial foraging and particle swarm optimization, Evolving Systems 11(1): 15-28.
- [83] Korürek, M. and Nizam, A. (2010). Clustering MIT-BIH arrhythmias with ant colony optimization using time domain and PCA compressed wavelet coefficients, Digital Signal Processing 20(4): 1050-1060.
- [84] Krasteva, V., Didon, J.-P., Ménétré, S. and Jekova, I. (2023). Deep learning strategy for sliding ECG analysis during cardiopulmonary resuscitation: Influence of the hands-off time on accuracy, Sensors 23(9): 4500.
- [85] Krasteva, V. and Jekova, I. (2005). Assessment of ECG frequency and morphology parameters for automatic classification of life-threatening cardiac arrhythmias, Physiological Measurement 26(5): 707.
- [86] Krasteva, V., Ménétré, S., Didon, J.P. and Jekova, I. (2020). Fully convolutional deep neural networks with optimized hyperparameters for detection of shockable and non-shockable rhythms, Sensors 20(10): 2875.
- [87] Krause, L. (2023). What is ventricular tachycardia? Symptoms, causes, and more, Healthline, https://www.healthline.com/health/ventricular-tachycardia.
- [88] Kwok, H., Coult, J., Blackwood, J., Sotoodehnia, N., Kudenchuk, P. and Rea, T. (2022). A method for continuous rhythm classification and early detection of ventricular fibrillation during CPR, Resuscitation 176(1): 90-97.
- [89] Lai, D., Fan, X., Zhang, Y. and Chen, W. (2021). Intelligent and efficient detection of life-threatening ventricular arrhythmias in short segments of surface ECG signals, IEEE Sensors 21(13): 14110-14120.
- [90] Lee, S.H. and Yoon, Y.R. (2016). Method for detecting ventricular activity of ECG using adaptive threshold, Journal of Medical and Biological Engineering 36(3): 410-419.
- [91] Li, F.F., Karpathy, A., Johnson, J., Yeung, S. and Tas, A. (2016). Cs231n convolutional neural networks for visual recognition, Neural Networks 1(1): 21.
- [92] Li, Q., Rajagopalan, C. and Clifford, G.D. (2014). Ventricular fibrillation and tachycardia classification using a machine learning approach, IEEE Transactions on Biomedical Engineering 61(6): 1607-1613.
- [93] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. and Talwalkar, A. (2017). Hyperband: A novel bandit-based approach to hyperparameter optimization, Journal of Machine Learning Research 18(1): 6765-6816.
- [94] Li, Q., Zhao, J. and Zhao, Y. (2009). Detection of ventricular fibrillation by support vector machine algorithm, 2009 International Asia Conference on Informatics in Control, Automation and Robotics, Bangkok, Thailand, pp. 287-290.
- [95] Li, Y., Bisera, J., Weil, M.H. and Tang, W. (2012). An algorithm used for ventricular fibrillation detection without interrupting chest compression, IEEE Transactions on Biomedical Engineering 59(1): 78-86.
- [96] Long, Z., Liu, G. and Dai, X. (2010). Extracting emotional features from ECG by using wavelet transform, International Conference on Biomedical Engineering and Computer Science, Wuhan, China, pp. 1-4.
- [97] Lu, Q., Jia, Z., Hu, J. and Shi, Y. (2022). ICD-BAS: Detecting ventricular arrhythmia using binary architecture search for implantable cardioverter defibrillators, IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Arlington, USA, pp. 111-117.
- [98] Madan, P., Singh, V., Singh, D.P., Diwakar, M., Pant, B. and Kishor, A. (2022). A hybrid deep learning approach for ECG-based arrhythmia classification, Bioengineering 9(4): 1-26.
- [99] Mandal, S., Mondal, P. and Roy, A. (2021). Detection of ventricular arrhythmia by using heart rate variability signal and ECG beat image, Biomedical Signal Processing and Control 68(1): 102692.
- [100] Mar, T., Zaunseder, S., Martínez, J., Llamedo, M. and Poll, R. (2011). Optimization of ECG classification by means of feature selection, IEEE Transactions on Biomedical Engineering 58(8): 2168-2177.
- [101] Marcano-Cedeño, A., Quintanilla-Domínguez, J., Cortina-Januchs, M. and Andina, D. (2010). Feature selection using sequential forward selection and classification applying artificial metaplasticity neural network, IECON Proceedings (Industrial Electronics Conference), Glendale, USA, pp. 2845-2850.
- [102] Marsman, R.F., Tan, H.L. and Bezzina, C.R. (2014). Genetics of sudden cardiac death caused by ventricular arrhythmias, Nature Reviews Cardiology 11(2): 96-111.
- [103] Mathunjwa, B.M., Lin, Y., Lin, C., Abbod, M. F. and Shieh, J. (2021). ECG arrhythmia classification by using a recurrence plot and convolutional neural network, Biomedical Signal Processing and Control 64(February): 102262.
- [104] Mathunjwa, B.M., Lin, Y.T., Lin, C.H., Abbod, M.F., Sadrawi, M. and Shieh, J.S. (2022). ECG recurrence plot-based arrhythmia classification using two-dimensional deep residual CNN features, Sensors 22(4): 1660.
- [105] Mendel, J. (1991). Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications, Proceedings of the IEEE 79(3): 278-305.
- [106] Millet-Roig, J., Rieta-Ibáñez, J., Vilanova, E., Mocholí, A. and Chorro, F. (1999). Time-frequency analysis of a single ECG to discriminate between ventricular tachycardia and ventricular fibrillation, Computers in Cardiology 26: 711-714.
- [107] Mirjalili, S. (2019). Evolutionary algorithms and neural networks, Studies in Computational Intelligence 780(1): 43-53.
- [108] Mjahad, A., Frances-Villora, J., Bataller-Mompean, M. and Rosado-Muñoz, A. (2022). Ventricular fibrillation and tachycardia detection using features derived from topological data analysis, Applied Sciences 12(14): 7248.
- [109] Mohanty, M. (2018). Classification of ventricular arrhythmias using DWT based VMD features, 2018 2nd International Conference on Data Science and Business Analytics (ICDSBA), Changsha, China, pp. 507-510.
- [110] Mohanty, M., Sahoo, S., Biswal, P. and Sabut, S. (2018). Efficient classification of ventricular arrhythmias using feature selection and c4.5 classifier, Biomedical Signal Processing and Control 44(1): 200-208.
- [111] Mohanty, S., Biswal, P. and Sabut (2019). Ventricular tachycardia and fibrillation detection using DWT and decision tree classifier, Journal of Mechanics in Medicine and Biology 19(03): 1950008.
- [112] Moody, G. and Mark, R. (2001). The impact of the MIT-BIH arrhythmia database, IEEE Engineering in Medicine and Biology Magazine 20(3): 45-50.
- [113] Myers, G.A., Martin, G.J., Magid, N.M., Barnett, P.S., Schaad, J.W., Weiss, J.S., Lesch, M. and Singer, D.H. (1986). Power spectral analysis of heart rate varability in sudden cardiac death: Comparison to other methods, IEEE Transactions on Biomedical Engineering BME-33(12): 1149-1156.
- [114] Nadimi-Shahraki, M.H., Taghian, S. and Mirjalili, S. (2021). An improved grey wolf optimizer for solving engineering problems, Expert Systems with Applications 166(1): 113917.
- [115] Nasimi, F. and Yazdchi, M. (2022). LDIAED: A lightweight deep learning algorithm implementable on automated external defibrillators, PLoS One 17(2): 1-12.
- [116] Nehme, Z., Burns, S., Ball, J., Bernard, S. and Smith, K. (2021). The impact of ventricular fibrillation amplitude on successful cardioversion, resuscitation duration, and survival after out-of-hospital cardiac arrest, Critical Care and Resuscitation 23(2): 202-210.
- [117] Nguyen, M.T., Nguyen, B.V. and Kim, K. (2018a). Deep feature learning for sudden cardiac arrest detection in automated external defibrillators, Scientific Reports 8(1): 1-12.
- [118] Nguyen, M.T., Shahzad, A., Van Nguyen, B. and Kim, K. (2018b). Diagnosis of shockable rhythms for automated external defibrillators using a reliable support vector machine classifier, Biomedical Signal Processing and Control 44(1): 258-269.
- [119] Nguyen, M., Van Nguyen, B. and Kim, K. (2017). Shockable rhythm diagnosis for automated external defibrillators using a modified variational mode decomposition technique, IEEE Transactions on Industrial Informatics 13(6): 3037-3046.
- [120] Nichol, G., Sayre, M.R., Guerra, F. and Poole, J. (2017). Defibrillation for ventricular fibrillation: A shocking update, Journal of the American College of Cardiology 70(12): 1496-1509.
- [121] Noruzi, M., Sabeti, M. and Boostani, R. (2017). A comprehensive approach towards classification and prediction of ventricular tachycardia and ventricular fibrillation, Biomedical Engineering: Applications, Basis and Communications 29(5): 1-10.
- [122] Oh, Y.K., Hagiwara, Y., Adam, M., Sudarshan, V.K., Koh, J.E., Tan, J.H., Chua, C.K. and Tan (2017). Shockable versus nonshockable life-threatening ventricular arrhythmias using DWT and nonlinear features of ECG signals, Journal of Mechanics in Medicine and Biology 17(7): 1740004.
- [123] Okai, T., Hirata, S., Oya, H., Hoshi, Y., Nakano, K., Yamaguchi, Y., Igarashi, T. and Miyauchi, H. (2018). A new recognition algorithm for shockable arrhythmias and its performance analysis, IECON 2018: 44th Annual Conference of the IEEE Industrial Electronics Society, Washington, USA, pp. 2671-2676.
- [124] Panda, R., Jain, S., Tripathy, R.K. and Acharya, U.R. (2020). Detection of shockable ventricular cardiac arrhythmias from ECG signals using FFREWT filter-bank and deep convolutional neural network, Computers in Biology and Medicine 124(July): 103939.
- [125] Panigrahy, D., Sahu, P. and Albu, F. (2021). Detection of ventricular fibrillation rhythm by using boosted support vector machine with an optimal variable combination, Computers & Electrical Engineering 91(1): 107035.
- [126] Patro, K.K., Prakash, A.J., Samantray, S., Pławiak, J., Tadeusiewicz, R. and Pławiak, P. (2022). A hybrid approach of a deep learning technique for real-time ECG beat detection, International Journal of Applied Mathematics and Computer Science 32(3): 455-465, DOI: 10.34768/amcs-2022-0033.
- [127] Picon, A., Irusta, U., Álvarez-Gila, A., Aramendi, E., Alonso-Atienza, F., Figuera, C., Ayala, U., Garrote, E., Wik, L., Kramer-Johansen, J. and Eftestøl, T. (2019). Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia, PloS One 14(5): e0216756.
- [128] Pulluri, K. and Kumar, V. (2022). Development of an integrated soft e-nose for food quality assessment, IEEE Sensors Journal 22(15): 15111-15122.
- [129] Rahman, Q., Tereshchenko, L., Kongkatong, M., Abraham, T., Roselle Abraham, M. and Shatkay, H. (2015). Utilizing ECG-based heartbeat classification for hypertrophic cardiomyopathy identification, IEEE Transactions on Nanobioscience 14(5): 505-512.
- [130] Rahul, J. and Sharma, L.D. (2022). Automatic cardiac arrhythmia classification based on hybrid 1-D CNN and BI-LSTM model, Biocybernetics and Biomedical Engineering 42(1): 312-324.
- [131] Rajesh, K. and Dhuli, R. (2017). Classification of ECG heartbeats using nonlinear decomposition methods and support vector machine, Computers in Biology and Medicine 87(1): 271-284.
- [132] Rajeshwari, M. and Kavitha, K. (2022). Arrhythmia ventricular fibrillation classification on ECG signal using ensemble feature selection and deep neural network, Cluster Computing 25(5): 3085-3102.
- [133] Rana, N., Latiff, M.S.A., Abdulhamid, S.M. and Chiroma, H. (2020). Whale optimization algorithm: A systematic review of contemporary applications, modifications and developments, Neural Computing and Applications 32(1): 16245-16277.
- [134] Rangayyan, R.M. (2015). Biomedical Signal Analysis, John Wiley & Sons, Bangalore.
- [135] Requena-Carrión, J., Alonso-Atienza, F., Everss, E., Sánchez-Muñoz, J.J., Ortiz, M., García-Alberola, A. and Rojo-Álvarez, J.L. (2013). Analysis of the robustness of spectral indices during ventricular fibrillation, Biomedical Signal Processing and Control 8(6): 733-739.
- [136] Ripley, K.L., Bump, T.E. and Arzbaecher, R.C. (1992). Evaluation of techniques for recognition of ventricular arrhythmias by implanted devices, IEEE Transactions on Biomedical Engineering 36(6): 618-624.
- [137] Sakr, A.S., Pławiak, P., Tadeusiewicz, R., Pławiak, J., Sakr, M. and Hammad, M. (2023). ECG-COVID: An end-to-end deep model based on electrocardiogram for COVID-19 detection, Information Sciences 619(1): 324-339.
- [138] Selvakumar, G., Bagan, K.B. and Chidambararajan, B. (2007). Wavelet decomposition for detection and classification of critical ECG arrhythmias, Proceeding of the 8th WSEAS International Conference on Mathematics and Computers in Biology and Chemistry, Vancouver, Canada, pp. 80-84.
- [139] Sengur, A. (2008). An expert system based on principal component analysis, artificial immune system and fuzzy K-NN for diagnosis of valvular heart diseases, Computers in Biology and Medicine 38(3): 329-338.
- [140] Shadmand, S. and Mashoufi, B. (2016a). A new personalized ECG signal classification algorithm using block-based neural network and particle swarm optimization, Biomedical Signal Processing and Control 25(1): 12-23.
- [141] Shadmand, S. and Mashoufi, B. (2016b). A new personalized ECG signal classification algorithm using block-based neural network and particle swarm optimization, Biomedical Signal Processing and Control 25(1): 12-23.
- [142] Sharma, M. (2020). Detection of shockable ventricular arrhythmia using optimal orthogonal wavelet filters, Neural Computing and Applications 32(20): 15869-15884.
- [143] Sharma, M., Singh, S., Kumar, A., San, R. and Acharya, U.R. (2019). Automated detection of shockable and non-shockable arrhythmia using novel wavelet-based ECG features, Computers in Biology and Medicine 115(September): 103446.
- [144] Sharma, N., Verlekar, P., Ashary, R. and Zhiquan, S. (2017). Regularization and feature selection for large dimensional data, arXiv: 1712.01975.
- [145] Sharma, P., Dinkar, S.K. and Gupta, D.V. (2021). A novel hybrid deep learning method with cuckoo search algorithm for classification of arrhythmia disease using ECG signals, Neural Computing and Applications 33(19): 13123-13143.
- [146] Shen, C.P., Freed, B.C., Walter, D.P., Perry, J.C., Barakat, A.F., Elashery, A.R.A., Shah, K.S., Kutty, S., McGillion, M., Ng, F.S. and Khedraki, R. (2023). Convolution neural network algorithm for shockable arrhythmia classification within a digitally connected automated external defibrillator, Journal of the American Heart Association 12(8): e026974.
- [147] Shi, H., Liu, R., Chen, C., Shu, M. and Wang, Y. (2021). ECG baseline estimation and denoising with group sparse regularization, IEEE Access 9(1): 23595-23607.
- [148] Shridhar, S., Karuna, Y., Saladi, S. and Reddy, R. (2019). Denoising of ECG signals using wavelet transform and principal component analysis, Proceedings of the International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Jaipur, India, p. 8.
- [149] Sidharth, K., Kumar, B.S., Kavya, L., Karuna, Y. and Saritha, S. (2023). Discrimination of ventricular arrhythmias using machine learning models, 2023 10th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, pp. 329-334.
- [150] Sinha, A.N. and Das (2021). Discrimination of life-threatening arrhythmias using singular value, harmonic phase distribution, and dynamic time warping of ECG signals, IEEE Transactions on Instrumentation and Measurement 70(1): 1-8.
- [151] Sinha, N. and Das, A. (2020). Automatic diagnosis of cardiac arrhythmias based on three stage feature fusion and classification model using DWT, Biomedical Signal Processing and Control 62(1): 102066.
- [152] Small, M., Yu, D. Harrison, R.G., Robertson, C., Clegg, G., Holzer, M. and Sterz, F. (2000). Deterministic nonlinearity in ventricular fibrillation, Chaos: An Interdisciplinary Journal of Nonlinear Science 10(1): 268-277.
- [153] Smital, L., V´ıtek, M., Kozumplík, J. and Provazník, I. (2013). Adaptive wavelet wiener filtering of ECG signals, IEEE Transactions on Biomedical Engineering 60(2): 437-445.
- [154] Sun, Y., Chan, K. and Krishnan, S. (2005). Life-threatening ventricular arrhythmia recognition by nonlinear descriptor, Biomedical Engineering Online 4(1): 1-11.
- [155] Tantawi, M.M., Revett, K., Salem, A.B. and Tolba, M.F. (2015). A wavelet feature extraction method for electrocardiogram (ECG)-based biometric recognition, Signal, Image and Video Processing 9(6): 1271-1280.
- [156] Tashan, T., Karam, E.H. and Mohsin, E.F. (2019). Immune PID controller based on differential evolution algorithm for heart rate regulation, International Journal of Advanced Computer Research 9(42): 177-185.
- [157] Thakor, N.V., Zhu, Y.S. and Pan, K.Y. (1990). Ventricular tachycardia and fibrillation detection by a sequential hypothesis testing algorithm, IEEE Transactions on Biomedical Engineering 37(9): 837-843.
- [158] Tompkins, W. (1995). Detecting ventricular fibrillation, IEEE Engineering in Medicine and Biology 14(2): 152-159.
- [159] Tripathi, P.M., Kumar, A., Kumar, M. and Komaragiri, R. (2022). Multilevel classification and detection of cardiac arrhythmias with high-resolution superlet transform and deep convolution neural network, IEEE Transactions on Instrumentation and Measurement 71(1): 1-13.
- [160] Tripathy, S., Sharma L.N., Dandapat S. and Das, S. (2016). Detection of shockable ventricular arrhythmia using variational mode decomposition, Journal of Medical Systems 40(1): 1-13.
- [161] Tseng, L.-M. and Tseng, V.S. (2020). Predicting ventricular fibrillation through deep learning, IEEE Access 8(1): 221886-221896.
- [162] Valarmathi, R. and Sheela, T. (2021). Heart disease prediction using hyper parameter optimization (HPO) tuning, Biomedical Signal Processing and Control 70(1): 103033.
- [163] Wagner, P., Strodthoff, N., Bousseljot, R.-D., Kreiseler, D., Lunze, F.I., Samek,W. and Schaeffter, T. (2020). PTB-XL, a large publicly available electrocardiography dataset, Scientific Data 7(1): 154.
- [164] Wang, J., Chiang, W., Hsu, Y. and Yang, Y. (2013). ECG arrhythmia classification using a probabilistic neural network with a feature reduction method, Neurocomputing 116(1): 38-45.
- [165] Wang, X., Chen, B., Zeng, M., Wang, Y., Liu, H., Liu, R., Tian, L. and Lu, X. (2022). An ECG signal denoising method using conditional generative adversarial net, IEEE Journal of Biomedical and Health Informatics 26(7): 2929-2940.
- [166] Wang, Y., Zhu, Y.S., Thakor, N.V. and Xu, Y.H. (2001). A short-time multifractal approach for arrhythmia detection based on fuzzy neural network, IEEE Transactions on Biomedical Engineering 48(9): 989-995.
- [167] Wang, Z., Wan, F., Wong, C.M. and Zhang, L. (2016). Adaptive Fourier decomposition based ECG denoising, Computers in Biology and Medicine 77(1): 195-205.
- [168] WHO (2021). Cardiovascular diseases (CVDs), https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
- [169] Yang, L. and Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice, Neurocomputing 415(1): 295-316.
- [170] Zhang, C., Zhao, J., Li, F., Jia, H. and Tian, J. (2011). Support vector machine algorithm for real-time detection of VF signals, Procedia Environmental Sciences 8(1): 602-608.
- [171] Zhang, X.S., Zhu, Y.S., Thakor, N.V. and Wang, Z.Z. (1999). Detecting ventricular tachycardia and fibrillation by complexity measure, IEEE Transactions on Biomedical Engineering 46(5): 548-555.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2f863a45-5511-4809-8208-202a6e92c613