Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 64, no. 2/3 | 119--136
Tytuł artykułu

Some Notions of Separability of Metric Spaces in ZF and Their Relation to Compactness

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the realm of metric spaces we show in ZF that: (1) Quasi separability (a metric space X = (X, d) is quasi separable iff X has a dense subset which is expressible as a countable union of finite sets) is the weakest property under which a limit point compact metric space is compact. (2) ω-quasi separability (a metric space X = (X, d) is ω-quasi separable iff X has a dense subset which is expressible as a countable union of countable sets) is a property under which a countably compact metric space is compact. (3) The statement “Every totally bounded metric space is separable” does not imply the countable choice axiom CAC.
Wydawca

Rocznik
Strony
119--136
Opis fizyczny
Bibliogr. 10 poz., tab.
Twórcy
  • Department of Mathematics, University of the Aegean, Karlovassi, Samos 83200, Greece, kker@aegean.gr
Bibliografia
  • [1] C. Good and I. J. Tree, Continuing horrors of topology without choice, Topology Appl. 63 (1995), 79–90.
  • [2] G. Gutierres, Total boundedness and the axiom of choice, Appl. Categor. Structures 24 (2016), 457–469.
  • [3] P. Howard, K. Keremedis, J. E. Rubin, A. Stanley and E. Tachtsis, Non-constructive properties of the real line, Math. Logic Quart. 47 (2001), 423–431.
  • [4] P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Math. Surveys Monogr. 59, Amer. Math. Soc., Providence, RI, 1998.
  • [5] T. Jech, The Axiom of Choice, North-Holland, 1973.
  • [6] K. Keremedis, On the relative strength of forms of compactness of metric spaces and their countable productivity in ZF, Topology Appl. 159 (2012), 3396–3403.
  • [7] K. Keremedis, On sequentially compact and related notions of compactness of metric spaces in ZF, Bull. Polish Acad. Sci. Math. 64 (2016), 29–46.
  • [8] K. Keremedis, On Weierstrass compact pseudometric spaces and a weak form of the axiom of choice, Topology Appl. 108 (2000), 75–78.
  • [9] J. R. Munkres, Topology, Prentice-Hall, Englewood Cliffs, NJ, 1975.
  • [10] J. Nagata, Modern General Topology, North-Holland, 1985.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2f0c894b-c3da-4fb3-868a-e539955fca13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.