Czasopismo
2016
|
Vol. 64, no. 2/3
|
119--136
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In the realm of metric spaces we show in ZF that: (1) Quasi separability (a metric space X = (X, d) is quasi separable iff X has a dense subset which is expressible as a countable union of finite sets) is the weakest property under which a limit point compact metric space is compact. (2) ω-quasi separability (a metric space X = (X, d) is ω-quasi separable iff X has a dense subset which is expressible as a countable union of countable sets) is a property under which a countably compact metric space is compact. (3) The statement “Every totally bounded metric space is separable” does not imply the countable choice axiom CAC.
Rocznik
Tom
Strony
119--136
Opis fizyczny
Bibliogr. 10 poz., tab.
Twórcy
autor
- Department of Mathematics, University of the Aegean, Karlovassi, Samos 83200, Greece, kker@aegean.gr
Bibliografia
- [1] C. Good and I. J. Tree, Continuing horrors of topology without choice, Topology Appl. 63 (1995), 79–90.
- [2] G. Gutierres, Total boundedness and the axiom of choice, Appl. Categor. Structures 24 (2016), 457–469.
- [3] P. Howard, K. Keremedis, J. E. Rubin, A. Stanley and E. Tachtsis, Non-constructive properties of the real line, Math. Logic Quart. 47 (2001), 423–431.
- [4] P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Math. Surveys Monogr. 59, Amer. Math. Soc., Providence, RI, 1998.
- [5] T. Jech, The Axiom of Choice, North-Holland, 1973.
- [6] K. Keremedis, On the relative strength of forms of compactness of metric spaces and their countable productivity in ZF, Topology Appl. 159 (2012), 3396–3403.
- [7] K. Keremedis, On sequentially compact and related notions of compactness of metric spaces in ZF, Bull. Polish Acad. Sci. Math. 64 (2016), 29–46.
- [8] K. Keremedis, On Weierstrass compact pseudometric spaces and a weak form of the axiom of choice, Topology Appl. 108 (2000), 75–78.
- [9] J. R. Munkres, Topology, Prentice-Hall, Englewood Cliffs, NJ, 1975.
- [10] J. Nagata, Modern General Topology, North-Holland, 1985.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2f0c894b-c3da-4fb3-868a-e539955fca13