Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 56, nr 8 | 38-47
Tytuł artykułu

Sumowanie wiązek generowanych przez jednowymiarowe matryce laserów półprzewodnikowych

Autorzy
Warianty tytułu
EN
Beam combining of one-dimensional semiconductor laser arrays
Języki publikacji
PL
Abstrakty
PL
Parametrem decydującym o przydatności laserów półprzewodnikowych w wielu nowoczesnych zastosowaniach technicznych lub medycznych jest luminancja wiązki fal emitowanej przez te lasery. Ze względu na różnego rodzaju ograniczenia konstrukcyjne, pojedyncze krawędziowe lasery półprzewodnikowe osiągnęły już jednak niemal maksymalną sprawność i moc wyjściową, a generowana przez nie wiązka charakteryzuje się asymetrycznym przekrojem i znaczną rozbieżnością. Rozwiązaniem staje się zatem stosowanie zbioru laserów tworzących matryce a następnie sumowanie emitowanych przez nie wiązek. Proces takiego sumowania (ang. Beam-combining) jest złożony ze względu na interferencję fal o różnych długościach, fazach i kierunkach propagacji, wymaga zatem synchronizacji. Zagadnienia te, a w szczególności metody sumowania koherentnego i niekoherentnego wiązek emitowanych przez jednowymiarowe matryce zwane linijkami laserowymi stanowią temat niniejszego artykułu. Jego ramy zostały ograniczone do opisania zagadnień kluczowych, lecz bogaty spis literatury powinien umożliwić zainteresowanym czytelnikom uzupełnienie aktualnego stanu wiedzy i techniki w tej dziedzinie.
EN
The parameter that is of particular interest for those who want to apply semiconductor lasers in modern technical or medical applications is luminance of the beam they emit. Numerous construction limitations have already almost restricted further improvements in the efficiency and output power of the individual devices. What’s more, their beam is usually asymmetrical in the cross-section and strongly divergent. Therefore a solution is sought through beam-combining of the laser arrays. The latter is complicated by wave interference that are of different length, phase and direction of propagation. These problems and in particular methods of coherent and non-coherent synchronization of the beams emitted by one-dimensional laser arrays are the subject of the present paper. Its scope has been restricted to some selected topics but a reach bibliography should be helpful for those who find the problems interesting.
Wydawca

Rocznik
Strony
38-47
Opis fizyczny
Bibliogr. 67 poz., rys., tab.
Twórcy
  • Instytut Technologii Elektronowej, Warszawa
Bibliografia
  • [1] T. Kita, N. Yamamoto, T. Kawanishi, H. Yamada: Ultra-compact wavelength-tunable quantum-dot laser with silicon-photonics double ring filter, Applied Physics Express, Vol. 8, No. 6, (2015), pp. 062701−1–4.
  • [2] Y. Bai, N. Bandyopadhyay, S.Tsao, S. Slivken, M. Razeghi: Room temperature quantum cascade lasers with 27% wall plug efficiency, Appl. Phys. Lett., Vol. 98, (2011), p. 181102.
  • [3] Q.Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, M. Razeghi: 2,4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers, Appl. Phys. Lett., Vol. 98, (2011), p. 181106.
  • [4] H. Naito, M. Miyamoto, Y. Aoki, A. Higuchi, K. Torii, T. Nagakura, T. Morita, J. Maeda, H. Miyajima, H.Yoshida: Short-Pulse Operation of a High-Power-Density Proton-Implanted Vertical-Cavity Surface-Emitting Laser Array, Appl. Phys. Express, Vol. 5, No. 8, (2012), p. 082104.
  • [5] Dilas, The diode laser company, www.dilas.com.
  • [6] A. Sanchez-Rubio: Wavelength Beam-Combined Laser Diode Arrays, Lincoln Laboratory, Laser Technology and Application Group, sanchez@IImit.edu, 2012 www.II.mit.edu.
  • [7] C. Canedy, I. Vurgaftman, J. Meyer: Interband cascade lasers shed their ultra-cool credentials, Compound Semicond., (July 2008), p.25.
  • [8] S. Slivken, Y.Bai, S.R. Darvish, M. Razeghi: Powerful QCLs eye remote sensing, Compound Semicond. (Oct. 2008), p. 21.
  • [9] M. Day, D. Pushkarsky, K. Caffey, R. Cecchetti, A. Arp, A. Whitmore, M. Henson, E.B. Takeuchi, Quantum Cascade Lasers for Defense & Security, Proc. of SPIE, Vol. 8898, p. 8898021.
  • [10] S. Hilzensauer, C. Giesin, J. Schleife, J. Gilly, S. Patterson, M.T. Kelemen: High-power diode lasers between 1,8 µm and 3.0 µm for military applications. Proc. of SPIE, Vol. 8898, p. 88980U-1.
  • [11] T.Y. Fan, A. Sanchez , V.Daneu, R.L. Aggawal, S..C. Buchter, A. Goyala, Ch. C. Cook: Laser Beam Combining for Power and Brightness Scaling, Aerospace Conf. Proc., 2000 IEEE, Vol. 3, pp. 49–54.
  • [12] T.Y. Fan, Laser Beam Combining for High-Power, High-Radiance Sources, IEEE J. Sel. Topics in Quantum Electron. Vol. 11, No. 3, (May/June 2005), p. 567.
  • [13] A.K. Goyal, A. Sanchez, G.W. Turner, T.Y. Fan, Z.L. Liau, M.J. Manfra, P.J. Foti, L. Missaggia, P.O’Brien, J.L. Daneu: Wavelength Beam Combining of Mid-IR Semiconductor Lasers, LEOS 2001, 14-th Annual Meeting of the IEEE,WQ3.
  • [14] D. Botez, L. Mawst , P.Hayashida, G. Peterson, T.J. Roth: High-power diffraction-limited beam operation from phase-locked diode-laser arrays of closely spaced “leaky” waveguides guides (antiguides), Appl. Phys. Lett. Vol. 53, (1988), pp. 464–466.
  • [15] D. Botez, L. Mawst, G. Peterson: Resonant leaky wave coupling in linear arrays of antiguides, Electron. Lett., Vol. 24, (Oct.1988), pp. 1328–1330.
  • [16] D. Botez, L. Mawst G. Peterson, T.J. Roth: Resonant optical transmission and coupling in phase-locked diode-laser arrays of antiguides: The resonant-optical-waveguide array, Appl. Phys. Lett., Vol. 54, (May 1989), pp. 2183–2185.
  • [17] L. Mawst, D. Botez, T.J. Roth, G. Peterson: High-power in-phasemode operation from resonant phase-locked arrays of antiguided diode lasers, Appl. Phys. Lett. Vol. 55, (July 1989), pp. 10–12.
  • [18] D. Botez, L.J. Mawst G.L. Peterson, T.J. Roth: Phase-Locked Arrays of Antiguides: Modal Content and Discrimination, IEEE J. Quantum Electron., Vol. 26, No.1, (March 1990), pp. 482–495.
  • [19] D. Botez, AP. Napartovich, C.A. Zmudzinski: Phase-locked arrays of antiguides: analytical theory II IEEE J. Quantum. Electron., Vol. 31, (1995), p. 244.
  • [20] H. Yang, L. J. Mawst, M. Nesnidal, J. Lopez, A. Bhattachrya, D. Botez: 10W near-diffraction-limited peak pulsed power from free, 0.98 µm-emitting phase-locked antiguided arrays , Electron. Lett. Vol. 33, (1997), p.136.
  • [21] C.A. Zmudzinski, D. Botez, L.J. Mawst, C.Tu, L. Frantz: Coherent 1W continuous wave operation aperture resonant arrays of antiguided diode lasers, Appl. Phys. Lett. Vol. 62, (1993), p. 2914.
  • [22] H. Yang, L.J. Mawst, D. Botez: 1.6 W continuous-wave coherent power from large-index-step (∆n~0.1) near-resonant, antiguided diode laser arrays, Appl. Phys. Lett. Vol. 76, (2000), p.1219.
  • [23] M. Kanskar, T. Earles, T.J. Goodnough, E. Stiers, D. Botez, L.J. Mawst: 83% CW power conversion efficiency at 50 W from 970 nm laser bars, Electron. Lett., Vol. 41, No. 5, (March 2005), p. 245.
  • [24] D. Botez, M. Jansen, I. J. Mawst, G. Peterson, T.J. Roth: Wattrange, coherent, uniphase powers from phaselocked arrays of antiguided diode lasers, Appl. Phys. Lett., Vol. 58, (1991), p. 2070.
  • [25] J.D. Kirch, C.-C. Chang. C. Boyle, L.J. Mawst, D. Lindberg III, T. Earles, D. Botez: 5,5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers, Appl. Phys. Lett., vol. 106, (2015), p. 061113.
  • [26] H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A.Ginolas, A. Knauer, P. Ressel, G. Erbert: 10 W continuous-wave monolithically integrated master-oscillator power-amplifier, Electron. Lett., Vol. 43, No. 3, (2007), p. 160.
  • [27] D. Mehuys, D.F. Welch, R.G. Waarts, R.Parke, A. Hardy, W . Streifer: Analysis of Monolithic Integrator Master Oscillator Power Amplifiers, IEEE J. Quantum Electron., Vol. 27, No. 7, (1991), p. 1900.
  • [28] S.M. Redmond, K.J. Creedon, J.E. Kansky, SJ. August, L.J.Missaggia, M.K. Connors, R.K. Huang, B. Chann, T.Y. Fan, G.W. Turner, A. Sanchez-Rubio: Active coherent beam combining of diode lasers, Optics Lett., Vol. 36, No. 6, (March 2011), p. 999.
  • [29] Y. Liu, Y. Braiman: Synchronization of High-Power Broad-Area Semiconductor Lasers, IEEE J. Sel. Topics in Quantum Electron., Vol. 10, No. 5, ( Sept/Oct. 2004), p. 1013.
  • [30] M. Troccoli, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho: Mid-infrared (λ=7.4 µm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality, Appl. Phys. Lett., Vol. 80, (2002), p. 4103.
  • [31] B. Hinkov, M. Beck, E. Gini, J. Faist: Quantum cascade laser in a master oscillator power amplifier configuration with Watt-level optical output power, Optics Express, Vol. 21, No. 16, (Aug. 2013), p. 19180.
  • [32] P. Rauter, S. Menzel, B. Gokden, A.K. Goyal, Ch.A. Wang, A. Sanchez, G. Turner, F. Capasso: Single-mode tapered quantum cascade lasers, Appl. Phys. Lett., Vol. 102, (2013), p. 181102.
  • [33] B. Gökden, T.S. Mansuripur, R. Blanchard, Ch. Wang, A. Goyal, A. Sanchez-Rubio, G. Turner, F. Capasso: High-brightness tapered quantum cascade lasers, Appl. Phys. Lett., Vol. 102, (2013), p. 053503.
  • [34] P. Rauter, S. Menzel, A.K. Goyal, B. Gökden, Ch.A. Wang, A. Sanchez, G.W. Turner, F. Capasso: Master-oscillator power-amplifiier quantum cascade laser array, Appl. Phys. Lett., Vol. 101, (2012), p. 261117.
  • [35] P. Rauter P. S. Menzel, A.K. Goyal, Ch.A. Wang, A. Sanchez, G.W. Turner, F. Capasso: High-power arrays of quantum cascade laser master-oscillator power amplifiers, Optics Express, Vol. 21, No. 4, (Feb. 2013), p. 4518.
  • [36] G. Bloom, Ch. Larat, E. Lallier, M. Carras, X. Marcadet, Coherent combining of two quantum-cascade lasers in a Michelson cavity, Optics Lett., Vol. 35, No. 11, (June 2010), p. 1917.
  • [37] D. Sabourdy, A. Desfarges-Bethelemot, V. Kermène, A. Barthélémy: 975-nm Single-Mode Laser Source: External Coherent Combining of Two Pigtailed Laser Diodes, IEEE J. Sel. Topics in Quantum Electron., Vol. 10, No. 5, (2004), p. 1033.
  • [38] S. Stry, L. Hildebrandt, J Sacher, Ch. Buggle, M. Kemmann, W.von Klitzing: Compact tunable diode laser with diffraction limited 1 W for atom cooling and trapping, Sacher Lasertechnik, D-35037 Marburg, Germany.
  • [39] B. Mroziewicz: External cavity wavelength tunable semiconductor lasers−a review: Opto-Electronics Review, Vol. 16, No. 4, (2008), p. 347.
  • [40] B. Chann, I. Nelson, T.G. Walker: Frequency-narrowed external-cavity diode-laser-array bar, Optics Lett., Vol. 25, No. 18, (Sept.2000), p. 1352.
  • [41] H. Dammann, E. Klotz, Coherent optical generation and inspection of two-dimensional periodic structures, Optica Acta, Vol. 24, No. 4, (1977), p. 505.
  • [42] J.R. Leger, G.J. Swanson, W.B. Veldkamp: Coherent beam addition of GaAlAs lasers by binary phase gratings, Appl. Phys. Lett., Vol. 48, (1986), p. 888.
  • [43] J.R. Leger, G.J. Swanson, W.B. Veldkamp : Coherent laser addition using binary phase gratings, Appl. Optics, Vol. 26, No. 20, (Oct. 1987), p. 4391.
  • [44] G. Bloom, C. Larat, E. Lallier, G. Lehoucq, S. Bansrooopun, M.-S. L. Lee-Bonhours, B. Loissseaux, M. Carras, X. Marcadet, G. Lucas-Leclin, P. Georges: Passive coherent beam combining of quantum-cascade lasers with a Dammann grating, Optics Lett., Vol. 36, No. 19, (Oct. 2011), p. 3810.
  • [45] T.M. Hard: Laser Wavelength Selection and Output Coupling by a Grating, Applied Optics , Vol. 9, No.8, (Aug.1970), p. 1825.
  • [46] V. Daneu, A. Sanchez, T.Y. Fan, H.K. Choi, G.W. Turner, C.C. Cook: Spectral beam combining of a broad-stripe diode laser array in an external cavity, Optics. Lett., Vol. 25, No. 6, (March 2000), p. 405.
  • [47] B. Chann, R.K. Huang, L.J. Missaggia, C.T. Harris, Z.L. Liau, A.K. Goyal, J.P. Donelly, T.Y. Fan, A. Sanchez-Rubio, G.W. Turner: Near-diffraction-limited diode laser arrays by wavelength beam combining, Optics Lett., Vol. 30, No. 16, ( Aug. 2005), p. 2104.
  • [48] B. Chann, R.K. Huang, L.J. Missaggia, Ch.T. Harris, Z.L. Liau, A.K. Goyal ,J.P. Donnelly T.Y. Fan, A. Sanchez-Rubio G.W. Turner: High-Power Near-Diffraction-Limited Wavelength Beam-Combined Diode Arrays, 2005 Conference on Lasers& Electro-Optics (CLEO), CMX7, p.429-431.
  • [49] R.K. Huang, B. Chann, L.J. Missaggia, J.P. Donelly, Ch.T. Harris, G.W. Turner, A.K. Goyal , T.Y. Fan, A. Sanchez-Rubio: High-Brightness Wavelength Beam Combined Semiconductor Laser Diode Arrays, IEEE Photon. Tech. Lett., Vol. 19, No. 4, (Feb. 2007), p. 209.
  • [50] B.G. Lee, M.A. Belkin, Ch. Pflügl, L. Dichl, H.A. Zhang, R.M. Audet, J. MacArthur,D.P. Bour, S.W. Corzine, G.E. Höfler, F. Capasso: DFB Quantum Cascade Laser Arrays, IEEE J. Quantum Electron., Vol. 45, (May 2009), p. 554.
  • [51] B.G. Lee, J. Kansky, A.K. Goyal, Ch. Pflügl, L. Diehl, M.A. Belkin, A. Sanchez, F. Capasso: Beam combining of quantum cascade laser arrays, Opt. Express. ,Vol. 17, No. 18, (Aug. 2009), p.16216.
  • [52] A. K. Goyal, M. Spencer, O. Shatrovoy, B.G. Lee, L. Diehl, Ch. Pflügl, A. Sanchez, F. Capasso,: Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays, Optics Expr. Vol. 19, No. 27, (Dec. 2001), p. 26725.
  • [53] S. Hugger, R. Aidam, W. Bronner F. Fuchs, R. Lösch, Q. Yang, J. Wagner, E. Romasew, M. Raab, H.D. Tholl, B. Höfer, A.L. Matthes: Power scaling of quantum cascade lasers via multiemitter beam combining, Optical Eng. ,Vol. 49, (Nov. 2010), p. 111111-1.
  • [54] L. Hildebrandt, S. Stry, R. Knispel, J.R. Sacher,T. Beyer, M. Braun,A. Lambrecht, T. Gensty, W. Elsäßer, Ch. Mann, F. Fuchs: Quantum cascade external cavity and DFB laser systems in the mid- infrared spectral range devices and applications, lars@sacher-laser.com.
  • [55] E.G. Loewen, M. Nevière, D. Maysire, Grating efficiency theory as it applies to blazed and holographic gratings, Applied Optics, Vol. 16, No. 10, (Oct. 1977), p. 2711.
  • [56] Y-Y. Yang, Y-P. Zhao, L-R. Wang, l. Zhang, X-C. Lin: Designing and optimizing highly efficient grating for high-brightness laser based on spectral beam combining, J. Appl. Phys., Vol. 117, (2015), p. 103108.
  • [57] G. Wysocki , R. Lewicki, R.F. Curl, F.K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, J. Faist: Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing, Appl. Phys. Vol. B 92, (2008), pp. 305–311.
  • [58] G. Luo, Ch. Peng, H.Q. Le, S-S Pei, H. Lee, W-Y. Hwang, B. Ishaug, J. Zheng: Broadly Wavelength-Tunable External Cavity Mid-Infrared Quantum Cascade Lasers, IEEE J. Quantum Electron., Vol. 38, No. 5, (2002), p. 486.
  • [59] A. Lyakh, R. Maulini, A.G. Tsekoun, C. Kumar, N. Patel: Progress in high-performance quantum cascade lasers:, Optical Eng., Vol. 49, No. 11, (Nov. 2010) p. 111105.
  • [60] E.A.J. Marcatili, Slab-coupled waveguides, Bell Syst. Tech. J. Vol. 53, (1974), pp. 645–672.
  • [61] R.K. Huang , J.P. Donnelly, L.J, Missaggia, C.T. Harris, J. Plant, D.E. Mull, W.D. Goodhue: High-Power Nearly diffraction-Limited AlGaAs-InGaAs Semiconductor Slab-Coupled Optical Waveguide Laser, IEEE Photon. Technol. Lett. Vol.15, (2003), p. 900.
  • [62] J. P. Donnelly, R.K. Huang, J.N. Walpole, L.J. Missaggia, Ch.T. Harris, J.J. Plant, R.J. Bailey, D. E. Mull, W.D. Goodhue, G.W. Turner, AlGaAs-InGaAs Slab-Coupled Optical Waveguide Lasers, IEEE J. Quantum Electron., Vol. 39, No. 2, (2003), pp. 289–298.
  • [63] R.K. Huang, L.J. Missaggia, J.P. Donnelly, Ch.T. Harris, G.W. Turner, High-Brightness Slab-Coupled Optical Waveguide Laser Arrays, IEEE Photon. Tech. Lett., Vol. 17, No. 5, (2005), pp. 959–961.
  • [64] E.M. Garmire, M. T. Tavis: Heatsink Requirements for Coherent Operation of High=Power Semiconductor Laser Arrays, IEEE J. Quantum Electron., Vol. QE 10, No. 11, (Nov.1984). p. 1277–1283.
  • [65] M.G. Littman: Single- mode operation of grazing-incidence pulsed dye laser, Optics Lett., Vol. 3, No. 4, (Oct. 1978), p. 138.
  • [66] M.G. Littman. H.J. Metcalf: Spectrally narrow pulsed dye laser without beam expander, Applied Optics, Vol. 17, No. 14, (July 1978), p. 2224.
  • [67] K.C. Harvey, C.J. Myatt: External-cavity diode laser using a grazing- incidence diffraction grating, Optics Lett., Vol. 16, No. 12, (June 1991), p. 910.
Uwagi
PL
Praca była częściowo finansowana w ramach realizacji projektu IRCOM, nr DOB-1-6/1/PS/20-14, Narodowego Centrum Badań i Rozwoju
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2ea07a07-de6a-4a71-bdc9-cdab10b66e41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.