Warianty tytułu
Wyzwania i możliwości odzysku w gospodarce odpadami podczas procesów wydobycia i wzbogacania rud zawierających uran i tor - przegląd
Języki publikacji
Abstrakty
During the extraction of nuclear raw materials, rare earths and other elements from ores containing uranium and thorium, various types of radioactive waste and some recovery tailings are generated. Mining and ore processing residues, i.e. waste and tailings, present a variety of problems related to waste management. Their bulky structure prevents their disposal underground, and their long radioactive half-life causes various problems with regard to their long-term storage. As a matter of fact, the secondary presence of nuclear raw materials together with other minerals requires compliance with hazardous waste procedures in the storage of waste containing nuclear raw materials after the recovery of these main minerals. It may be possible in the future to recover these nuclear raw materials from stockpiles of stored mine waste. The prospect of imbalances in the global uranium supply and demand increases the importance of secondary sources contributing to the global uranium supply. The increasing importance of secondary sources of nuclear raw materials suggests that more attention should be paid to the recovery of these resources together with primary minerals than in the past. In world literature, there is no review article that describes and discusses the waste management of nuclear raw materials in mining and mineral processing together with the opportunities and obstacles for their recovery. Considering this deficiency in the literature, in this study, the properties of waste and tailings resulting from mining and ore preparation activities of nuclear raw materials are explained, the difficulties encountered are mentioned, and solution suggestions are presented by making use of the literature on the recovery of tailings and waste management.
Podczas wydobycia surowców promieniotwórczych, pierwiastków ziem rzadkich i innych pierwiastków z rud zawierających uran i tor powstają różnego rodzaju odpady radioaktywne oraz niektóre odpady poprodukcyjne. Pozostałości po wydobyciu i przeróbce rud, czyli odpady i odpady poflotacyjne, stwarzają szereg problemów związanych z gospodarką odpadami. Ich nieporęczna struktura uniemożliwia składowanie pod ziemią, a długi okres półrozpadu radioaktywności powoduje różne problemy związane z ich długotrwałym składowaniem. W rzeczywistości wtórna obecność surowców promieniotwórczych wraz z innymi minerałami wymaga przestrzegania procedur dotyczących odpadów niebezpiecznych przy składowaniu odpadów zawierających surowce radioaktywne po odzyskaniu tych głównych minerałów. Być może w przyszłości możliwe będzie odzyskiwanie tych surowców radioaktywnych ze składowanych odpadów kopalnianych. Perspektywa braku równowagi w globalnej podaży i popycie na uran zwiększa znaczenie źródeł wtórnych przyczyniających się do globalnej podaży uranu. Rosnące znaczenie wtórnych źródeł surowców radioaktywnych sugeruje, że należy zwrócić większą uwagę na odzysk tych zasobów wraz z pierwotnymi minerałami niż w przeszłości. W literaturze światowej nie ma artykułu przeglądowego opisującego i omawiającego gospodarkę odpadami surowców promieniotwórczych w górnictwie i przetwórstwie minerałów wraz z możliwościami i przeszkodami w ich odzyskiwaniu. Biorąc pod uwagę ten brak w literaturze, w niniejszym opracowaniu wyjaśniono właściwości odpadów i odpadów poflotacyjnych powstałych w wyniku wydobycia i przeróbki rud surowców radioaktywnych, wspomniano o napotkanych trudnościach oraz przedstawiono propozycje rozwiązań, wykorzystując literaturę dotyczącą odzysku odpadów poflotacyjnych i gospodarki odpadami.
Czasopismo
Rocznik
Tom
Strony
25--62
Opis fizyczny
Bibliogr. 229 poz., rys.
Twórcy
autor
- Adana Alparslan Türkeş Science and Technology University, Department of Mining Engineering, Turkey, tdyildiz@atu.edu.tr
autor
- Adana Alparslan Türkeş Science and Technology University, Department of Mining Engineering, Turkey, ttombal@atu.edu.tr
Bibliografia
- [1] Abhilash et al. 2010 – Abhilash, Dhal, B., Mehta, K.D., Kumar, V. and Pandey, B. 2010. Bio-processing for metal extraction, recycling and effluent treatment- an overview. [In:] International Conference on Non-ferrous Metals 2010, Varanasi.
- [2] Abzalov, M.Z. 2012. Sandstone-hosted uranium deposits amenable for exploitation by in situ leaching Technologies. Applied Earth Science 121(2), pp. 55-64, DOI: 10.1179/1743275812Y.0000000021.
- [3] Agrawal et al. 2004 – Agrawal, A., Sahu, K.K. and Pandey, B.D. 2004. Solid waste management in non-ferrous industries in India. Resources, Conservation and Recycling 42(2), pp. 99-120, DOI: 10.1016/j.resconrec.2003.10.004.
- [4] Ahmad et al. 2021 – Ahmad, M., Muslija, A. and Satrovic, E. 2021. Does economic prosperity lead to environmental sustainability in developing economies? Environmental Kuznets Curve Theory. Environmental Science and Pollution Research, 28, pp. 22588-22601, DOI: 10.1007/s11356-020-12276-9.
- [5] Al‐Hashimi et al. 2007 – Al‐Hashimi, A., Evans, G.J. and Cox, B. 2007. Leachability of hazardous elements from uranium tailings. International Journal of Environmental Studies 46(1), pp. 59-68, DOI: 10.1080/00207239408710910.
- [6] Allesch, A. and Huber-Humer, M. 2023. A brief glance on global waste management. [In:] Tribaudino, M., Vollprecht, D., Pavese, A. (eds) Minerals and Waste. DOI: 10.1007/978-3-031-16135-3.
- [7] Alnour et al. 2017 – Alnour, I.A., Wagiran, H., Ibrahim, N., Hamzah, S. and Elias, M.S. 2017. Determination of the elemental concentration of uranium and thorium in the products and by-products of amang tin tailings process. AIP Conference Proceedings 1799(1), DOI: 10.1063/1.4972913.
- [8] Altay et al. 2022 – Altay, M.B., Kalıpçıoğlu, C. and Kurt, Z. 2022. Comparative Life Cycle Assessment of Uranium Recovery from Brine. Resources, Conservation and Recycling 181, DOI: 10.1016/j.resconrec.2022.106237.
- [9] Altıner et al. 2021 – Altıner, M., Top, S., Kaymakoğlu, B. and Bayat, O. 2021. Dissolution of uranium and rare earth elements from a low-grade phosphate ore using different acids. Geosound 54(1), pp. 66-83. [Online:]https://dergipark.org.tr/en/pub/geosound/issue/66136/1035058.
- [10] Alves et al. 2001 – Alves, H., Koster, U., Aghion, E. and Eliezer, D. 2001. Environmental behavior of magnesium and magnesium alloysd. Materials Technology 16(2), pp. 110-126, DOI: 10.1080/10667857.2001.11752920.
- [11] Appleton, J.D. 2013. Radon in air and water. [In:] Selinus, O. (eds) Essentials of Medical Geology. pp. 239-277, DOI: 10.1007/978-94-007-4375-5_11.
- [12] Araujo et al. 2022 – Araujo, F.S., Taborda-Llano, I., Nunes, E.B. and Santos, R.M. 2022. Recycling and reuse of mine tailings: A review of advancements and their implications. Geosciences 12(9), DOI: 10.3390/geosciences12090319.
- [13] Ault et al. 2016 – Ault, T.M., Gosen, B.S., Krahn, S.L. and Croff, A.G. 2016. Natural thorium resources and recovery: Options and impacts. Nuclear Technology 194(2), pp. 136-151, DOI: 10.13182/NT15-83.
- [14] Aziman et al. 2021 – Aziman, E.S., Mohd Salehuddin, A.H. and Ismail, A.F. 2021. Remediation of thorium (IV) from wastewater: Current status and way forward. Separation & Purification Reviews 50(2), pp. 177-202, DOI: 10.1080/15422119.2019.1639519.
- [15] Aziman et al. 2023 – Aziman, E.S., Ismail, A.F. and Rahmat, M.A. 2023. Balancing economic growth and environmental protection: A sustainable approach to Malaysia’s rare-earth industry. Resources Policy 83, DOI: 10.1016/j.resourpol.2023.103753.
- [16] Badakhshan et al. 2023 – Badakhshan, N., Shahriar, K., Afraei, S. and Bakhtavar, E. 2023. Determining the environmental costs of mining projects: A comprehensive quantitative assessment. Resources Policy 82, DOI: 10.1016/j.resourpol.2023.103561.
- [17] Bakarzhiyev et al. 2005 – Bakarzhiyev, A.C., Bakarzhiyev, Y., Babak, M.I. and Makarenko, M.M. 2005. Perspective of exploitation of new sandstone type deposits by ISL method and environmental impact from uranium deposits mined out by in situ leaching in Ukraine. pp.273-282. [In:] Developments in uranium resources, production, demand and the environment. Proceedings of a technical committee meeting held in Vienna, pp. 273-282. [Online:] https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/083/36083489.pdf?r=1.
- [18] Barakos et al. 2016 – Barakos, G., Mischo, H., and Gutzmer, J. 2016. Rare earth underground mining approaches with respect to radioactivity control and monitoring strategies. Chapter 8 [In:] Rare Earths Industry: Technological, Economic, and Environmental Implications, pp. 121-138, DOI: 10.1016/B978-0-12-802328-0.00008-5.
- [19] Barbin et al. 2023 – Barbin, N.M., Devyatkin, N.O., Terent’ev, D.I. and Kobelev, A.M. 2023. Thermodynamic simulation of thermal processes involving actinides (U, Am, Pu) during heating of radioactive graphite in a mixture of water vapor and oxygen. Radiochemistry 65, pp. 34-38, DOI: 10.1134/S1066362223010058.
- [20] Bochud et al. 2011 – Bochud, S.F.O., Baechler, S., Moïse, K.N., Merlin, N. and Froidevaux, P. 2011. Natural radioactivity measurements and dose calculations to the public: Case of the uranium-bearing region of Poli in Cameroon. Radiation Measurements 46(2), pp. 254-260, DOI: 10.1016/j.radmeas.2010.11.009.
- [21] Boitsov et al. 2005 – Boitsov, A.V., Komarov, A.V. and Nikolsk, A.L. 2005. Environmental impact of uranium mining and milling in the Russian Federation. [In:] Developments in uranium resources, production, demand and the environment. Proceedings of a technical committee meeting held in Vienna, pp. 165-170. [Online:] https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/083/36083489.pdf?r=1 [Accessed: 2023-11-30].
- [22] Bunus, R. and Dumitrescu, P. 1986. Uranium(VI) extraction from acid mixtures with organophosphorus esters. Hydrometallurgy 16(2), pp. 167-175, DOI: 10.1016/0304-386X(86)90041-1.
- [23] Bunus, R. and Dumitrescu, P. 1992. Simultaneous extraction of rare earth elements and uranium from phosphoric acid. Hydrometallurgy 28(3), pp. 331-338, DOI: 10.1016/0304-386X(92)90038-2.
- [24] Carney, G. 2007. Constitutional framework for regulation of the Australian uranium industry. Australian Resources and Energy Law Journal 26(3), pp. 235-248.
- [25] Carvalho, F.P. 2018. Uranium mining legacy and radiation protection. Radiation & Applications 3(1), pp. 1-6, DOI: 10.21175/RadJ.2018.01.001.
- [26] Carvalho et al. 2005 – Carvalho, I.G., Cidu, R., Fanfani, L., Pitsch, H., Beaucaire, C. and Zuddas, P. 2005. Environmental impact of uranium mining and ore processing in the Lagoa Real District, Bahia, Brazil. Environmental science & technology 39(22), pp. 8646-8652, DOI: 10.1021/es0505494.
- [27] Cioroianu et al. 2001 – Cioroianu, T.M., Bunus, F.T., Filip, D. and Filip, G. 2001. Environmental considerations on uranium and radium from phosphate fertilizers. Proceedings of IAEA Technical Meeting, Vienna, September (1998), pp. 215-224. [Online:] https://inis.iaea.org/collection/NCLCollectionStore/_Public/32/051/32051590.pdf?r=1&r=1 [Accessed: 2023-11-30].
- [28] Cioroianu et al. 2005 – Cioroianu, T.M., Bunus, F.T., Guta, E., Filip, D. and Filip, G. 2005. Uranium recovery in Romania from alternative sources and impact on environment. [In:] Developments in uranium resources, production, demand and the environment. Proceedings of a technical committee meeting held in Vienna, pp. 119-126. [Online:] https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/083/36083489.pdf?r=1 [Accessed: 2023-11-30].
- [29] Clark et al. 2003 – Clark, P.A., Parvin, D.F., Powrie, C.J., Orr, C.H., Mottershead, G. and Forbes, A.M. 2003. Gamma spectrometry systems for the assay of uranium residues and potentially contaminated low level wastes at the capenhurst site. ASME 2003, 9th International Conference on Radioactive Waste Management and Environmental Remediation, pp. 859-864, DOI: 10.1115/ICEM2003-4690.
- [30] Coetzee et al. 2002a – Coetzee, H., Wade, P. and Winde, F. 2002a. Reliance on existing wetlands for pollution control around the Witwatersrand gold/uranium mines of South Africa – Are they sufficient? [In:] Merkel, B.J., Planer-Friedrich, B. and Wolkersdorfer, C. (eds) Uranium in the Aquatic Environment, pp. 59-64, DOI: 10.1007/978-3-642-55668-5_6.
- [31] Coetzee et al. 2002b – Coetzee, H., Chevrel, S. and Cottard, F. 2002b. Inter-disciplinary studies of the impact of gold and uranium mining in the Witwatersrand Goldfield. [In:] Merkel, B.J., Planer-Friedrich, B. and Wolkersdorfer, C. (eds) Uranium in the Aquatic Environment, pp. 553-560, DOI: 10.1007/978-3-642-55668-5_65.
- [32] Cordier, D.J. 2023. Thorium. U.S. Geological Survey, Mineral Commodity Summaries. [Online:] https://pubs.usgs. gov/periodicals/mcs2023/mcs2023-thorium.pdf.
- [33] Cuney, M. 2009. The extreme diversity of uranium deposits. Miner Deposita 44, pp. 3-9, DOI: 10.1007/s00126-008-0223-1.
- [34] Curtis, D.B. and Gancarz, A. 1978. Lead isotopes as indicators of environmental contamination from the uranium mining and milling industry in the Grants Mineral Belt, New Mexico, 10(7).
- [35] Çetiner et al. 2006 – Çetiner, E.G., Ünver, B. and Hindistan, M.A. 2006. Maden atıkları ile ilgili mevzuat: Avrupa Birliği ve Türkiye (Regulations related with mining wastes: European Community and Turkey). Journal of Mining 45(1), pp. 23-34. [Online:] https://search.trdizin.gov.tr/en/yayin/detay/64402/.
- [36] Çimen, O. 2021. Rare earth elements, strategic raw material source of advanced technology: Current situation and future projection in Türkiye.
- [37] Das et al. 2023 – Das, R., Topal, E. and Mardaneh, E. 2023. A review of open pit mine and waste dump schedule planning. Resources Policy 85(A), DOI: 10.1016/j.resourpol.2023.104064.
- [38] Datta et al. 2022 – Datta, S., Radhapyari, K., Saha, N. and Samanta, S.K. 2022. Recent trends in the application of biowaste for hazardous radioactive waste treatment. Chapter 7 [In:] Environmental Sustainability and Industries: Technologies for Solid Waste, Wastewater, and Air Treatment, pp. 159-192, DOI: 10.1016/B978-0-323-90034-8.00010-5.
- [39] Degueldre, C. and Joyce, M.J. 2020. Evidence and uncertainty for uranium and thorium abundance: A review. Progress in Nuclear Energy 124, DOI: 10.1016/j.pnucene.2020.103299.
- [40] Demir et al. 2010 – Demir, İ., Kurşun, İ. and Deler, İ.U. 2010. Investigation of radioactive contents of Soma Coals. 27th Annual International Pittsburgh Coal Conference 2010, İstanbul, Türkiye, 3, pp. 2562-2571.
- [41] Demir, I. and Kursun, I. 2012. Investigation of radioactive contents of Manisa-Soma and Istambul-Agacli coals (Turkey). Physicochem. Probl. Miner. Process 48(2), pp. 341-353, DOI: 10.5277/ppmp120202.
- [42] Denham et al. 1986 – Denham, D.H., Cross, F.T. and Soldat, J.K. 1986. Health effects estimation: methods and results for uranium mill tailings contaminated properties. MAG: 6148602. [Online:] https://oa.mg/work/6148602[Accessed: 2023-11-30].
- [43] Djenbaev et al. 2020 – Djenbaev, B.M., Kaldybaev, B.K., Zholboldiev, B.T., USh, K., Shumaliev, T. and Dikanov, K. 2020. Gamma Radiation of Radionuclide in The Mountain Areas of Former Uranium Production Facilities (Kyrgyzstan). Journal of Physical Science and Environmental Studies Research Paper 6(1), pp. 11-22, DOI: 10.36630/jpses_19012.
- [44] Dudgeon, C.R. and Waite, T.D. 1999. Disposal of uranium tailings as paste. IMWA Proceedings, Sevilla, Spain, pp. 305-310.
- [45] Ehsani et al. 2019 – Ehsani, A., Kaymakoğlu, B. and Kara, T.D. 2019. Nükleer enerji hammaddeleri üretim ve zenginleştirme süreçlerinin çalışan sağlığına etkileri (The effects of production and beneficiation processes of nuclear energy raw materials on employee health). International Symposium On Occupational Health And Safety In Mining’2019, Adana/Türkiye, pp. 391-402.
- [46] El-Halim, E.S. and Al-Abrdi, A.M. 2021. Relations between radionuclides activities and Pb concentration on different rock types. Arab Journal of Nuclear Sciences and Applications 54(3), pp. 90-97, DOI: 10.21608/AJNSA.2021.50965.1419.
- [47] Enderlin, W.I. 1978. Assessment of U.S. domestic capacity for producing reactor-grade thorium dioxide and controlling associated wastes and effluents. Department of Energy, Pacific Northwest Laboratory, United States.
- [48] Erdemoğlu, M. 2016. Environmental planning in mining and mining wastes assessment course notes. Türkiye.
- [49] Ewing, R.C. 2015. Designing a process for selecting a site for a deep-mined, geologic repository for high-level radioactive waste and spent nuclear fuel – overview and summary – report to the United States congress and the secretary of energy. Arlington, VA: US Nuclear Waste Technical Review Board.
- [50] Falck, W.E. 2015. Radioactive and other environmental contamination from uranium mining and milling. Chapter 1 [In:] Environmental Remediation and Restoration of Contaminated Nuclear And Norm Sites: Woodhead Publishing Series in Energy, pp. 3-34, DOI: 10.1016/B978-1-78242-231-0.00001-6.
- [51] Fan et al. 2013 – Fan, Z., Liu, Y., Wang, J., Ren, G. and Lee, W.E. 2013. China: Experience of radioactive waste (RAW) management. Chapter 22 [In:] Radioactive Waste Management and Contaminated Site Clean-Up: Processes, Technologies and International Experience Woodhead Publishing Series in Energy, pp. 697-722, DOI: 10.1533/9780857097446.2.697.
- [52] Farjana et al. 2021 – Farjana, S.H., Mahmud, M.A.P. and Huda, N. 2021. Comparative Life Cycle Assessment of Uranium Extraction Processes. Chapter 4 [In:] Life Cycle Assessment for Sustainable Mining, pp. 85-113, DOI: 10.1016/B978-0-323-85451-1.00004-4.
- [53] Flanary, J.R. and Goode, J.H. 1959. Recovery of neptunium-237 from process residues by solvent extraction. Industrial & Engineering Chemistry 51, pp. 55-57, DOI: 10.1021/ie50589a036.
- [54] Florio et al. 1952 – Florio, J.V., Rundle, R.E. and Snow, A.I. 1952. Compounds of thorium with transition metals. I. The thorium-manganese system. Acta Crystallographica 5, pp. 449-457, DOI: 10.1107/S0365110X52001337.
- [55] Florio et al. 1956 – Florio, J.V., Baenziger, N.C. and Rundle, R.E. 1956. Compounds of thorium with transition metals. II. Systems with iron, cobalt and nickel. Acta Crystallographica 9, pp. 367-372, DOI: 10.1107/S0365110X5600108X.
- [56] Gao et al. 2021 – Gao, Y., Xu, L., Zhang, M., Zhang, Q., Yang, Z., Yang, J., Xu, Z., Lv, Y. and Wang, Y. 2021. Ultra-selective ion sieve for thorium recovery from rare earth elements using oxygen-rich microporous carbon adsorption. Journal of hazardous materials 417, DOI: 10.1016/j.jhazmat.2021.126115.
- [57] Gerstmann et al. 2020 – Gerstmann, B.S., Lottermoser, B.G., Fairclough, M. and Winde, F. 2020. Witwatersrand gold tailings as a possible uranium resource: Opportunities and constraints [In:] Management of Naturally Occurring Radioactive Material (NORM) in Industry. Proceedings of an International Conference Held in Vienna, Austria. [Online:] https://publications.rwth-aachen.de/record/847916 [Accessed: 2023-11-30].
- [58] Ghorbani et al. 2016 – Ghorbani, Y., Franzidis, J.P. and Petersen, J. 2016. Heap leaching technology-current state, ınnovations, and future directions: A review. Mineral Processing and Extractive Metallurgy Review 37(2), pp. 73-119, DOI: 10.1080/08827508.2015.1115990.
- [59] Grambow, B. 2022. Mini review of research requirements for radioactive waste management including disposal. Frontiers in Nuclear Engineering 1, pp. 1-7, DOI: 10.3389/fnuen.2022.1052428.
- [60] Guan et al. 2022 – Guan, Q., Xu, F., Xiao, Y., You, Z.X., Bai, F. and Xing, Y. 2022. Extremely stable Thorium‐MOF assembly of tetraphenylethylene derivative with tunable AIE property and highly selective detection of nitro aromatic compounds. Advanced Materials Interfaces 9, DOI: 10.1002/admi.202201547.
- [61] Guang-zhi, W. 2010. Recycling and reuse of wastewater from uranium mining and milling. Uranium Mining and Metallurgy 29(2), pp. 78-81.
- [62] Guo et al. 2022 – Guo, M.N., Zhong, X., Liu, W.S., Wang, G.B., Chao, Y.Q., Huot, H., Qiu, R.L., Morel, J.L., Watteau, F., Séré, G. and Tang, Y.T. 2022. Biogeochemical dynamics of nutrients and rare earth elements (REEs) during natural succession from biocrusts to pioneer plants in REE mine tailings in southern China. The Science of the total environment 828, DOI: 10.1016/j.scitotenv.2022.154361.
- [63] Gupta, C.K. and Singh, H. 2003. Uranium resource processing: Secondary resources. Springer Berlin, Heidelberg.
- [64] Gupta, C.K. and Singh, H. 2005. Uranium resource processing: Secondary resources. [In:] Developments in uranium resources, production, demand and the environment. [Online:] https://inis.iaea.org/collection/NCLCollection-Store/_Public/36/083/36083489.pdf?r=1 [Accessed: 2023-11-30].
- [65] Gümüşsoy et al. 2023 – Gümüşsoy, A., Başyi̇ği̇t, M. and Kart, E.U. 2023. Economic potential and environmental impact of metal recovery from copper slag flotation tailings. Resources Policy 80, DOI: 10.1016/j.resourpol.2022.103232.
- [66] Hadiwinata, K. and Ramadhan, N. 2020. The Authority of Governments Regarding the Regulation and Supervision of Nuclear Mining Licensing on Business Perspectives in Indonesia. Advances in Economics, Business and Management Research, 136, 1st Annual Management, Business and Economic Conference (AMBEC 2019), pp. 39-43. DOI: 10.2991/aebmr.k.200415.008.
- [67] Hall, S. and Coleman, M. 2013. Critical analysis of world uranium resources: U.S. Scientific Investigations Report 2012-5239. [Online:] https://pubs.usgs.gov/sir/2012/5239/ [Accessed: 2023-11-30].
- [68] Hammond, C.R. 2000. The elements. [In:] Handbook of chemistry and physics. 86th edition. [Online:] http://mrteverett.com/chemistry/the%20elements.pdf [Accessed: 2023-11-30].
- [69] Hamby, R. 2016. Environmental health regulation of uranium mining and milling: A regulatory race to the bottom? University of Colorado, Master of Public Administration Program. [Online:] https://www.proquest.com/docview/1800750807?pq-origsite=gscholar&fromopenview=true [Accessed: 2023-11-30].
- [70] Harpy et al. 2020 – Harpy, N., El Dabour, S., Sallam, A.M., Nada, A.A., El Aassy, A.E. and El Feky, M.G. 2020. Radiometric and environmental impacts of mill tailings at experimental plant processing unit, Allouga, Egypt. Environmental Forensics 21(1), pp. 11-20, DOI: 10.1080/15275922.2019.1695020.
- [71] Hassan et al. 2023 – Hassan, S.T., Wang, P., Khan, I. and Zhu, B. 2023. The impact of economic complexity, technology advancements, and nuclear energy consumption on the ecological footprint of the USA: Towards circular economy initiatives. Gondwana Research 113, pp. 237-246, DOI: 10.1016/j.gr.2022.11.001.
- [72] Helling et al. 1997 – Helling, C., Junghans, M. and Nitzsche, O. 1997. Isotopic composition of groundwater from mixed uranium mill tailings in Saxony/Germany. Isotopes in Environmental and Health Studies 33(4), pp. 357-366, DOI: 10.1080/10256019708234048.
- [73] Huang et al. 2022 – Huang, B., Liu, Z., Wang, Y., Zhou, L., Wang, C. and Ye, T. 2022. Release behavior and mechanism of uranium and thorium from Ta-Nb tailings under simulated rainfall in Jiangxi Province, China. Environmental science and pollution research international 29(38), pp. 57466-57478, DOI: 10.1007/s11356-022-19931-3.
- [74] Hui et al. 2013 – Hui, L., Zhou G., Meng Y., Zheng Y., Shi, L. and Cheng H. 2013. Experiment Research on Recovery of Uranium and Copper From Leaching Solution of Uranium Ore With Sulfuric Acid. Hydrometallurgy of China 4, pp. 240-242.
- [75] Humphreys, D. 2001. Sustainable development: Can the mining industry afford it?. Resources Policy 27(1), pp. 1-7, DOI: 10.1016/S0301-4207(01)00003-4.
- [76] Hunan et al. 2016 – Hunan, D.D., Chen, W., Li, G., Yang, Y., Yu., Q., Li, F. and Wang, Y. 2016. Device for crushing and grinding uranium ores through assistance of 915MHz pulse microwave irradiation and control method. Patent No: CN105944810A, China, Accessed date: 30/11/2023. [Online:] https://patents.google.com/patent/CN105944810A/en.
- [77] Hussien et al. 2015 – Hussien, S.S., Desouky, O.A. and Bayoumi, M.B. 2015. The use of Pleurotus sapidus immobilized on Dowex®1×4 resin as a novel biosorbent for preconcentration of uranium (VI). International Journal of Current Microbiology and Applied Sciences 4(3), pp. 792-809.
- [78] IAEA. 1976. Management of wastes from the mining and milling of uranium and thorium ores. A Code of Practice and Guide to the Code, Safety Series No. 44. [Online:] https://gnssn.iaea.org/Superseded%20Safety%20Standards/Safety_Series_044_1976.pdf [Accessed: 2023-11-30].
- [79] IAEA. 1994. International basic safety standard for protection against ionizing radiation and for the safety of radiation sources. IAEA, Safety Series No. 115, pp. 7-8, 59-60.
- [80] IAEA. 2001. Manual of acid in situ leach uranium technology. TECDOC-1239, 283, IAEA, Vienna.
- [81] ICRP. 1985. Radiation protection principles for disposal of solid radioactive waste. Adopted July 1985. International Commission on Radiological Protection (ICRP) Publication 46. Oxford, Pergamon Press, Annals of the ICRP, 15(4).
- [82] Jiang et al. 2020 – Jiang, F., Wu, H., Liu, Y., Chen, G., Guo, J. and Wang, Z. 2020. Comprehensive evaluation system for stability of multiple dams in a uranium tailings reservoir: based on the TOPSIS model and bow tie model. Royal Society open science 7(4) DOI: 10.1098/rsos.191566.
- [83] Jiang et al. 2021 – Jiang, F., Tan, B., Wang, Z., Liu, Y., Hao, Y., Zhang, C., Wu, H. and Hong, C. 2021. Physical-mechanical properties and radon exhalation of fiber-reinforced uranium tailings geopolymer solidified bodies. DOI: 10.21203/rs.3.rs-632674/v1.
- [84] Jiang et al. 2022 – Jiang, F., Tan, B., Wang, Z., Liu, Y., Hao, Y., Zhang, C., Wu, H. and Hong, C. 2022. Preparation and related properties of geopolymer solidified uranium tailings bodies with various fibers and fiber content. Environmental science and pollution research international 29(14), pp. 20603-20616, DOI: 10.1007/s11356-021-17176-0.
- [85] Jung et al. 2016 – Jung, M., An, Y.H. and Kim, Y.H. 2016. Recycling of the waste rock and tailings from Yangyang Iron Mine. Journal of the Korean Institute of Resources Recycling 25(4), pp. 23-31, DOI: 10.7844/kirr.2016.25.4.23.
- [86] Kadadou et al. 2023 – Kadadou, D., Said, E.A., Ajaj, R. and Hasan, S.W. 2023. Research advances in nuclear wastewater treatment using conventional and hybrid technologies: Towards sustainable wastewater reuse and recovery. Journal of Water Process Engineering 52, DOI: 10.1016/j.jwpe.2023.103604.
- [87] Kam et al. 2014 – Kam, E., Osmanlioglu, A.E. and Bozkurt, A. 2014. Migration test column for decontamination of radioactive liquids by using natural tuff. Desalination and Water Treatment 52(34-36), pp. 6817-6821, DOI: 10.1080/19443994.2013.818923.
- [88] Kayadelen, M. 2009. Mining in terms of public benefit, problems – suggestions. [Online:] https://www.kayadelen. gen.tr/index.php?option=com_content&view=article&id=36:kamu-yarar-acsndan-madenciliimiz&catid=6:madencilik&Itemid=11 [Accessed: 2023-11-30].
- [89] Kaynar et al. 2023 – Kaynar, U.H., Kaptanoglu, İ.G., Cam-Kaynar, S., Ugurlu, O., Yusan, S., Aytas, Ş., Madkhli, A.Y. and Can, N. 2023. Adsorption of thorium (IV) ions using a novel borate-based nano material Ca3Y2B4O12: Application of response surface methodology and Artificial Neural Network. Applied Radiation and Isotopes 192, DOI: 10.1016/j.apradiso.2022.110606.
- [90] Kinnunen et al. 2018 – Kinnunen, P., Ismailov, A., Solismaa, S., Sreenivasan, H., Räisänen, M.L., Levänen, E. and Illikainen, M. 2018. Recycling mine tailings in chemically bonded ceramics – A review. Journal of Cleaner Production 174, pp. 634-649, DOI: 10.1016/j.jclepro.2017.10.280.
- [91] Koeyers, J.E. 1996. An assessment of some occupational health and safety issues in the mineral sands industry of Western Australia. MSc thesis, Murdoch University.
- [92] Kryzia, D. and Gawlik, L. 2016. Forecasting the price of uranium based on the costs of uranium deposits exploitation. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 32(3), pp. 93-109, DOI: 10.1515/gospo-2016-0026.
- [93] Kuczyńska et al. 2008 – Kuczyńska, I., Bednarek, A., Marcinkiewicz, D. and Koperski, T. 2008. Some aspects of converting exploitation waste into marketable products. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 24(3), pp. 309-318.
- [94] Kumar et al. 2013 – Kumar, P., Jaison, P.G., Telmore, V.M., Paul, S. and Aggarwal, S.K. 2013. Determination of Lanthanides, Thorium, Uranium and Plutonium in Irradiated (Th, Pu)O2 by Liquid Chromatography Using α-Hydroxyiso Butyric Acid (α-HIBA). International Journal of Analytical Mass Spectrometry and Chromatography 1, pp. 72-80, DOI: 10.4236/ijamsc.2013.11009.
- [95] Kursun, I. and Terzi, M. 2015. Investigation of solubility of radioactive elements contained in ashes of Yatagan Thermal Power Plant in acetic acid. Asian Journal of Chemistry 27(7), DOI: 10.14233/ajchem.2015.18831.
- [96] Kursun, I. and Terzi, M. 2016. Research on the Solubility of Radioactive Elements in the Ashes from the Soma in Turkey. Mineral Processing and Extractive Metallurgy Review 37(1), pp. 27-33, DOI: 10.1080/08827508.2015.1072710.
- [97] Kursun et al. 2016 – Kursun, I., Ozkan, S.G., Kilic, A., Terzi, M. and Enkhtaivan, N. 2016b. Recovery of trace elements with uranium and thorium from Yatagan Thermal Power plant fly ashes by leaching. Physicochem. Probl. Miner. Process 52(2), pp. 588-596, DOI: 10.5277/ppmp160206.
- [98] Kursun et al. 2018 – Kursun, I.,Tombal, T.D. and Terzi, M. 2018. Solubility of Eskisehir thorium/rare earth ores in sulphuric and nitric acids. Physicochem. Probl. Miner. Process 54(2), pp. 476-483, DOI: 10.5277/ppmp1846.
- [99] Landa, E.R. 2004. Uranium mill tailings: Nuclear waste and natural laboratory for geochemical and radioecological investigations. Journal of Environmental Radioactivity 77(1), pp. 1-27, DOI: 10.1016/j.jenvrad.2004.01.030.
- [100] Lee, W.E. and Ojovan, M.I. 2013. Fundamentals of radioactive waste (RAW): science, sources, classification and management strategies. Chapter 1 [In:] Radioactive Waste Management and Contaminated Site Clean-Up: Processes, Technologies and International Experience Woodhead Publishing Series in Energy, pp. 3-49, DOI: 10.1533/9780857097446.1.3.
- [101] Lewicka, E. 2013. Colour after firing versus mineral composition of feldspar raw materials from the Sobótka Region. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 29(1), 35, DOI: 10.2478/gospo-2013-0001.
- [102] Lin et al. 1995 – Lin, Y., Smart, N.G. and Wai, C.M. 1995. Supercritical fluid extraction of uranium and thorium from nitric acid solutions with organophosphorus reagents. Environmental science & technology 29(10), pp. 2706-2708, DOI: 10.1021/es00010a036.
- [103] Li et al. 2019 – Li, Z., Hadioui, M. and Wilkinson, K.J. 2019. Conditions affecting the release of thorium and uranium from the tailings of a niobium mine. Environmental pollution 247, pp. 206-215, DOI: 10.1016/j.envpol.2018.12.042.
- [104] Liu et al. 2021 – Liu, X., Li, X., Lan, M., Liu, Y., Hong, C. and Wang, H. 2021. Experimental study on permeability characteristics and radon exhalation law of overburden soil in uranium tailings pond. Environmental science and pollution research international 28(12), pp. 15248-15258, DOI: 10.1007/s11356-020-11758-0.
- [105] Lu, A. 2022. Mineral evolution heralds a new era for mineralogy. American Mineralogist 107(7), pp. 1217-1218, DOI: 10.2138/am-2022-8414.
- [106] Lv et al. 2021 – Lv, Y., Tang, C., Liu, X., Zhang, M., Chen, B., Hu, X., Chen, S. and Zhu, X. 2021. Optimization of environmental conditions for microbial stabilization of uranium tailings, and the microbial community response. Frontiers in microbiology 12, DOI: 10.3389/fmicb.2021.770206.
- [107] Machairas, E. and Varouchakis, E.A. 2023. Cost-benefit analysis and risk assessment for mining activities in terms of circular economy and their environmental impact. Geosciences 13, DOI: 10.3390/geosciences13100318.
- [108] Maksimova et al. 2022 – Maksimova, V.V., Krasavtseva, E.A., Savchenko, Y.E., Ikkonen, P.V., Elizarova, I., Masloboev, V.A. and Makarov, D. 2022. Study of the composition and properties of the beneficiation tailings of currently produced loparite ores. Journal of Mining Institute 256, pp. 642-650, DOI: 10.31897/PMI.2022.88.
- [109] Mao et al. 2022 – Mao, Y., Yong, J., Liu, Q., Wu, B., Chen, H., Hu, Y. and Feng, G. 2022. Heavy metals/metalloids in soil of a uranium tailings pond in Northwest China: Distribution and relationship with soil physicochemical properties and radionuclides. Sustainability 14(9), DOI: 10.3390/su14095315.
- [110] Macaskie et al. 2017 – Macaskie, L.E., Moriyama, S., Mikheenko, I.P., Singh, S. and Murray, A.J. 2017. Biotechnology processes for scalable, selective rare earth element recovery. [In:] Rare Earth Element. DOI: 10.5772/intechopen.68429.
- [111] McGrath C. 2000. Uranium mining, use and disposal law in Australia: The Case for a Cradle-to-Grave Philosophy. Environmental And Planning Law Journal 17(6), pp. 502-518.
- [112] Metcalf, P. and Batandjieva, B. 2013. International safety standards for radioactive waste (RAW) management and remediation of contaminated sites. Chapter 3. [In:] Radioactive Waste Management and Contaminated Site Clean-Up: Processes, Technologies and International Experience Woodhead Publishing Series in Energy. pp. 73-114, DOI: 10.1533/9780857097446.1.73.
- [113] Miller, J.M. and Wong, P.C.F. 2013. Canada: Experience of radioactive waste (RAW) management and contaminated site cleanup. Chapter 19. [In:] Radioactive Waste Management and Contaminated Site Clean-Up: Processes, Technologies and International Experience Woodhead Publishing Series in Energy. pp. 612-635, DOI: 10.1533/9780857097446.2.612.
- [114] Mohamed, A.O. and Paleologos, E.K. 2018. Sources and Characteristics of Wastes. Chapter 2. [In:] Fundamentals of Geoenvironmental Engineering: Understanding Soil, Water, and Pollutant Interaction and Transport. pp. 43-62, DOI: 10.1016/B978-0-12-804830-6.00002-8.
- [115] Moura et al. 2022 – Moura, V.V., Santos, T.O. and Pereira, C. 2022. Study of aluminothermic slag leaching for uranium and thorium recovery. Brazilian Journal of Radiation Sciences 10(3B), pp. 1-13, DOI: 10.15392/2319-0612.2022.2002.
- [116] Mining Türkiye Magazine 2018a. The latest state of uranium mining in the world. Mining Türkiye Magazine, 74, pp. 116-122. [Online:] https://madencilikturkiye.com/wp-content/uploads/2018/10/Madencilik-Turkiye-Dergisi-Sayi-74-mka13692468.pdf [Accessed: 2023-11-30] (in Turkish).
- [117] Mining Türkiye Magazine 2018b. Will the raw material of the future be thorium? Mining Türkiye Magazine 74, pp. 124-126. [Online:] https://madencilikturkiye.com/wp-content/uploads/2018/10/Madencilik-Turkiye-Dergisi-Sayi-74-mka13692468.pdf [Accessed: 2023-11-30] (in Turkish).
- [118] Mining Türkiye Magazine 2021. The silent player of energy conversion: Uranium. Mining Türkiye Magazine 98, pp.106-110. [Online:] https://madencilikturkiye.com/wp-content/uploads/2018/09/Madencilik-Turkiye-Dergisi-Sayi-98-jefj35trozc4r.pdf [Accessed: 2023-11-30] (in Turkish).
- [119] MTA 2023. Radioactive raw material research. General Directorate of MTA. [Online:] https://www.mta.gov.tr/v3.0/arastirmalar/radyoaktif-hammadde-arastirmalari [Accessed: 2023-11-30].
- [120] Mydosh, J.A. 2017. High magnetic field behavior of strongly correlated uranium-based compounds. Advances in Physics 66(4), pp. 263-314, DOI: 10.1080/00018732.2017.1466475.
- [121] Mudd, G.M. 2008. Radon sources and impacts: a review of mining and non-mining issues. Rev Environ Sci Biotechnol 7, pp. 325-353, DOI: 10.1007/s11157-008-9141-z.
- [122] Nabhani, K.A. and Khan, F. 2020. The role of international atomic agencies in regulating and legislation of radiation protection and the management of radioactive waste in the oil and gas industry. [In:] Nuclear Radioactive Materials in the Oil and Gas Industry. pp. 197-227, DOI: 10.1016/B978-0-12-816825-7.00006-6.
- [123] Namin et al. 2011 – Namin, F.S., Shahriar, K. and Bascetin, A. 2011. Environmental impact assessment of mining activities. A new approach for mining methods selection. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 27(2), pp. 113-143.
- [124] Nilsson, J-A. and Randhem, J. 2008. Environmental Impacts and Health Aspects in the Mining Industry – A Comparative Study of the Mining and Extraction of Uranium, Copper and Gold. MSc Thesis in the Master Degree Programme Industrial Ecology, Göteborg, Sweden, Report No. 2008(20). [Online:] https://odr.chalmers.se/server/api/core/bitstreams/4ac0ee08-15e8-462c-ad1d-11194a6eba56/content [Accessed: 2023-11-30].
- [125] Nwaila et al. 2021 – Nwaila, G.T., Ghorbani, Y., Zhang, S.E., Frimmel , H.E., Tolmay, L.C.K., Rose, D.H., Nwaila, P.C. and Bourdeau, J.E. 2021. Valorisation of mine waste – Part I: Characteristics of, and sampling methodology for, consolidated mineralised tailings by using Witwatersrand gold mines (South Africa) as an example. Journal of Environmental Management 295, DOI: 10.1016/j.jenvman.2021.113013.
- [126] Nygymanova et al. 2021 – Nygymanova, A., Pirmanova, A., Bakhtin, M., Kuterbekov, K., Kazymbet, P., Kabyshev, A.M. and Baikhozhayeva, B. 2021. The current radiation situation of the territory near the uranium mining enterprises of Northern Kazakhstan. Eurasian Chemico-Technological Journal 23(4), pp. 283-288, DOI: 10.18321/ectj1132.
- [127] Qiu et al. 2016 – Qiu, C., Gong, X.Z., Chen, W.J., Wang, Z.H., Gao, F. and Li, X.Q. 2016. Materials flows analysis on the beneficiation and roasting processes of a typical rare earth mineral. Materials Science Forum 847, pp. 352-357, DOI: 10.4028/www.scientific.net/MSF.847.352.
- [128] Oar et al. 2015 – Oar, Oriá and Rpd. 2015. Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR Part 192).
- [129] Okoshi, M. and Nakayama, S. 2015. Generation and characteristics of radioactive wastes. [In:] Nagasaki, S., Nakayama, S. (eds) Radioactive Waste Engineering and Management. An Advanced Course in Nuclear Engineering. DOI: 10.1007/978-4-431-55417-2_2.
- [130] Olkuski, T. and Stala-Szlugaj, K. 2009. The occurrence of radioactive elements in hard coal from the Upper Silesian Coal Basin. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 25(1), pp. 5-17.
- [131] Osmanlioglu, A.E. 2006a. Regulatory framework for the safety of radioactive waste management. International Congress Series 1294, pp. 229-232, DOI: 10.1016/j.ics.2006.02.060.
- [132] Osmanlioglu, A.E. 2006b. Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. Journal of Hazardous Materials 137(1), pp. 332-335, DOI: 101016/j.jhazmat.2006.02.013.
- [133] Osmanlioglu, A.E. 2007. Natural diatomite process for removal of radioactivity from liquid waste. Applied Radiation and Isotopes 65(1), pp. 17-20, DOI: 10.1016/j.apradiso.2006.08.012.
- [134] Osmanlioglu, A.E. 2012. Characterization of radiological hazardous effects of metal scraps in Turkey. Journal of Hazardous, Toxic, and Radioactive Waste 17(2), DOI: 10.1061/(ASCE)HZ.2153-5515.0000140.
- [135] Osmanlioglu, A.E. 2014. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor. Waste Management & Research 32(5), pp. 366-370, DOI: 10.1177/0734242X14523664.
- [136] Osmanlioglu, A.E. 2015. Decontamination and solidification of liquid radioactive waste using natural zeolite. Journal of Material Cycles and Waste Management 17(4), pp. 690-694, DOI: 10.1007/s10163-014-0299-x.
- [137] Osmanlioglu, A.E. 2016a. The environmental impact of uranium mine wastes. 16th International Symposium on Environmental Issues and Waste Management in Energy and Mineral Production (SWEMP), 5-7 October, İstanbul, Turkey.
- [138] Osmanlioglu, A.E. 2016b. Removal of radioactive contaminants by polymeric microspheres. Environmental Technology 37(22), pp. 2830-2834, DOI: 10.1080/09593330.2016.1167248.
- [139] Osmanlioglu, A.E. 2018a. Construction of a sustainable nuclear waste disposal facility. Advancements in Civil Engineering Technology 2(5), pp. 1-3, DOI: 10.31031/ACET.2018.02.000549.
- [140] Osmanlioglu, A.E. 2018b. Decontamination of radioactive wastewater by two-staged chemical precipitation. Nuclear Engineering And Technology 50(6), pp. 886-889, DOI: 101016/j.net.2018.04.009.
- [141] Osmanlioglu, A.E. 2022a. Uranium mining techniques and waste management. European Journal of Sustainable Development Research 6(4), em0198, DOI: 10.21601/ejosdr/12273.
- [142] Osmanlioglu, A.E. 2022b. Assessment of radioactivity dispersion model for surface water. European Journal of Sustainable Development Research 6(1), em0175, DOI: 10.21601/ejosdr/11398.
- [143] Ostrovskiy, Y., Zabortsev, G.M., Rabinovich, R.L., Kalk, V.R., and Lavelin, A.A. 2008. Galvanochemical purification of liquid radioactive wastes in sulphuric acid uranium refining pattern. Chemistry for Sustainable Development 16, pp. 557-562.
- [144] Pala et al. 2013 – Pala, A., Widziewicz, K., Nowak, J.S., Loska, K. and Biegańska, J. 2013. Content analysis of heavy metals/metalloids and mineral composition of waste generated during uranium concentrate processing. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 29, pp. 89-102, DOI: 10.2478/gospo-2013-0018.
- [145] Paschoa, A.S. and Steinhäusler, F. 2010. Legal Aspects of Natural Radiation. Radioactivity in the Environment. Chapter 6 [In:] Radioactivity in the Environment 17, pp. 141-151, DOI: 10.1016/S1569-4860(09)01706-9.
- [146] Patel et al. 2012 – Patel, R., Mugunthan, J., Singh, P., Mukherjee, S. and Koka, R. 2022. Microbial bioremediation and biodegradation of radioactive waste contaminated sites. Chapter 40 [In:] Microbes and microbial biotechnology for green remediation, pp. 733-746, DOI: 10.1016/B978-0-323-90452-0.00044-X.
- [147] Paterson-Beedle et al. 2009 – Paterson-Beedle, M., Macaskie, L.E., Readman, J.E. and Hriljac, J.A. 2009. Biorecovery of uranium from minewaters into pure mineral product at the expense of plant wastes. Advanced Materials Research 71-73, pp. 621-624, DOI: 10.4028/www.scientific.net/AMR.71-73.621.
- [148] Peeler, D.K. 2003. The impact of higher waste loading on glass properties: The Effects of uranium and thorium. Technical Report No: WSRC-TR-2003-00386, TRN: US0305628, US Department of Energy (US), DOI: 10.2172/820001.
- [149] Perkov, P. 2005. New production technology implementation to more efficiently and economically development of new uranium deposits. International symposium on uranium production and raw materials for the nuclear fuel cycle – Supply and demand, economics, the environment and energy security, Vienna (Austria), 20-24 June 2005, pp. 305-306.
- [150] Przewłocki, T. and Ślizowski, J. 2004. Disposod of high zevelwaste in the geological formations. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 20(1), pp. 39-63.
- [151] Raji et al. 2021 – Raji, I.B., Hoffmann, E., Ngie, A. and Winde, F. 2021. Assessing uranium pollution levels in the Rietspruit River, Far West Rand Goldfield, South Africa. International Journal of Environmental Research and Public Health 18, DOI: 10.3390/ijerph18168466.
- [152] Randive et al. 2023 – Randive, K.R., Godbole, P., Jawadand, S., Chopra, V., Dora, M.L. and Dhoble, S.J. 2023. Radioactive waste management in India: present status and future perspectives. Chapter 12 [In:] 360 Degree Waste Management, Volume 2: Biomedical, Pharmaceutical, Industrial Waste, and Remediation, pp. 273-298, DOI: 10.1016/B978-0-323-90909-9.00005-8.
- [153] Rastogi et al. 1997 – Rastogi, R.K., Mahajan, M. and Chaudhuri, N.K. 1997. Separation of thorium from uranium product at the tail end of thorium fuel reprocessing using macroporous cation-exchange resin. Separation Science and Technology 32(10), pp. 1711-1723, DOI: 10.1080/01496399708000730.
- [154] Rathod et al. 2023 – Rathod, A.M., Verpaele, S., Kelvin, M., Sullivan, K.V. and Leybourne, M.I. 2023. Uranium: An overview of physicochemical properties, exposure assessment methodologies, and health effects of environmental and occupational exposure. Environmental geochemistry and health 45(5), pp. 1183-1200, DOI: 10.1007/s10653-022-01293-x.
- [155] Reynier et al. 2021 – Reynier, N., Gagné-Turcotte, R., Coudert, L., Costis, S., Cameron, R.A. and Blais, J. 2021. Bioleaching of uranium tailings as secondary sources for rare earth elements production. Minerals 11(3), DOI: 10.3390/min11030302.
- [156] Robinson, P. 2004. Uranium mill tailings remediation performed by the US DOE: An Overview. Southwest Research and Information Center, Albuquerque, USA. [Online:] http://www.sric.org/uranium/docs/U_Mill_Tailing_Remediation_05182004.pdf [Accessed: 2023-11-30].
- [157] Robison, R.F. 2014. Mining and Selling Radium and Uranium. DOI: 10.1007/978-3-319-11830-7.
- [158] Różański, Z. 2019. Management of mining waste and the areas of its storage – environmental aspects. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 35(3), pp. 119-142, DOI: 10.24425/gsm.2019.128525.
- [159] Sanders, M.C. and Sanders, C.E. 2021. A world’s dilemma ‘upon which the sun never sets’: The nuclear waste management strategy (part III): Australia, Belgium, Czech Republic, Netherlands, and Romania. Progress in Nuclear Energy 142, DOI: 10.1016/j.pnucene.2021.104014.
- [160] Sanito et al. 2022 – Sanito, R.C., Bernuy-Zumaeta, M., You, S.J. and Wang, Y.F. 2022. A review on vitrification technologies of hazardous waste. Journal of Environmental Management 316, DOI: 10.1016/j.jenvman.2022.115243.
- [161] Sasaki et al. 2008 – Sasaki, T., Gunji, Y. and Iida, T. 2008. Radon diffusion coefficients for soils: Previous studies and their application to uranium-bearing wastes. Atomic Energy Society of Japan 7, pp. 1-11.
- [162] Satrovic et al. 2023 – Satrovic, E., Cetindas, A., Akben, I. and Damrah, S. 2023. Natural resource dependence, economic growth and transport energy consumption accelerate ecological footprint in the most innovative countries? The moderating role of technological innovation. Gondwana Research, DOI: 10.1016/j.gr.2023.04.008.
- [163] Savcı, S. and Kırat, G. 2022. Nadir toprak elementi (NTE) uranyumun çevre üzerine olan etkileri (Environmental effects of rare earth element (REE) uranium). Geosound 56 (1) pp. 81-91. [Online:] https://geosound.cu.edu.tr/storage/GEOSOUND%2056.pdf [Accessed: 2023-11-30].
- [164] Seleman et al. 2022 – Seleman, N.M.E., El-Kheshen, A.A., Raslan, M.F. and Shoeir, R.H. 2022. Glass production using tailing of upgraded rare metal mineralization, Abu Rusheid area – Egypt for nuclear waste immobilization. Ceramics International 48(1), pp. 569-577, DOI: 10.1016/j.ceramint.2021.09.135.
- [165] Semenova et al. 2020 – Semenova, Y., Pivina, L., Zhunussov, Y., Zhanaspayev, M., Chirumbolo, S., Muzdubayeva, Z . and Bjørklund, G. 2020. Radiation-related health hazards to uranium miners. Environmental science and pollution research international 27(28), pp. 34808-34822, DOI: 10.1007/s11356-020-09590-7.
- [166] Silva et al. 2019 – Silva, P.S., Hajj, T.M., Dantas, G.S. and Torquato, H. 2019. Exhalation rates determined in construction material produced from niobium waste. [In:] International Nuclear Atlantıc Conference, October 21-25, Santos, SP. Proceedings Rio de Janeiro: Associação Brasileira de Energia Nuclear, pp. 556-568.
- [167] Śliwka et al. 2022 – Śliwka, M., Kępys, W. and Pawul, M. 2022. Analysis of the properties of coal sludge in the context of the possibility of using it in biological reclamation. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 38(4), pp. 173-189, DOI: 10.24425/gsm.2022.143629.
- [168] Šljivić-Ivanović, M. and Smičiklas, I. 2020. Utilization of C&D waste in radioactive waste treatment-Current knowledge and perspectives. Chapter 23 [In:] Advances in Construction and Demolition Waste Recycling: Management, Processing and Environmental Assessment Woodhead Publishing Series in Civil and Structural Engineering, pp.475-500, DOI: 10.1016/B978-0-12-819055-5.00023-1.
- [169] Shaduka, I.S. 2016. Investigation of the groundwater evolution, interaction and potential radionuclide pollution from the unlined uranium tailings at Langerheinrich mine, Namibia. Research Report (Geol7028), University of the Witwatersrand, Johannesburg, South Africa. [Online:] https://wiredspace.wits.ac.za/server/api/core/bitstreams/e9efcf00-4240-4ad6-b79f-40557a8829da/content [Accessed: 2023-11-30].
- [170] Skeppström, K. and Olofsson, B. 2007. Uranium and radon in groundwater: An overview of the problem. European Water 17/18, pp. 51-62. [Online:] https://www.ewra.net/ew/pdf/EW_2007_17-18_05.pdf [Accessed: 2023-11-30].
- [171] Skubacz et al. 2019 – Skubacz, K., Wysocka, M., Michalik, B., Dziurzyński, W., Krach, A., Krawczyk, J. and Pałka, T. 2019. Modelling of radon hazards in underground mine workings. Science of The Total Environment 695, DOI: 10.1016/j.scitotenv.2019.133853.
- [172] Stevenson, R.S. 1950. The pharmacology and toxicology of uranium compounds: With a section on fluorine and hydrogen flüoride. Postgraduate Medical Journal 26(291), DOI: 10.1136/pgmj.26.291.47-a.
- [173] Soylu et al. 2022 – Soylu, A., Doner, Z., Unluer, A.T., Fişne, A. and Kumral, M. 2022. Uranium potentiality of coal occurences in Dinar (Afyonkarahisar, western Turkey) region: Geologic factors controlling the accumulation of the uranium. Afyon Kocatepe University Journal of Sciences and Engineering 22(5), pp. 1176-1183, DOI: 10.35414/akufemubid.1111015.
- [174] Swift et al. 1976 – Swift, J.J., Hardin, J. and Calley, H.W. 1976. Potential radiological impact of airborne releases and direct gamma radiation to individuals living near inactive uranium mill tailings piles. U.S. Environmental Protection Agency, Office of Radiation Programs.
- [175] Sukhovarov-Jornoviy et al. 2005 – Sukhovarov-Jornoviy, B.V., Bakarzhiyev, A.C., Makarenko, N.N., Baback, M., Gursky, D.S. 2005. Uranium deposits of Ukraine for ISL mining: Developments in uranium resources of Ukraine for in situ leach (ISL) uranium mining – Historical analysis, operational, geological, environmental and economic aspects. [In:] Developments in uranium resources, production, demand and the environment”, Proceedings of a technical committee meeting held in Vienna, 15-18 June 1999, pp. 119-126. [Online:] https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/083/36083489.pdf?r=1 [Accessed: 2023-11-30].
- [176] Sukla et al. 2014 – Sukla, L.B., Esther, J., Panda, S.K. and Pradhan, N. 2014. Biomineral processing: A valid eco -friendly alternative for metal extraction. Research And Reviews: Journal Of Microbiology And Biotechnology 3(4), pp. 1-10. [Online:] https://www.rroij.com/open-access/biomineral-processing-a-valid-ecofriendly-alternative-for-metal-extraction.php?aid=34543 [Accessed: 2023-11-30].
- [177] Sutton, M.W. and Weiersbye, I. 2008. Land-use after mine closure – risk assessment of gold and uranium mine residue deposits on the Eastern Witwatersrand, South Africa. In AB Fourie, M Tibbett, I Weiersbye & P Dye (eds), Mine Closure 2008: Proceedings of the Third International Seminar on Mine Closure, Australian Centre for Geomechanics, Perth, pp. 363-374, DOI: 10.36487/ACG_repo/852_33.
- [178] Sutton et al. 2011 – Sutton, M.W., Weiersbye, I.M., Galpin, J.S. and Tutu, H. 2011. Risk assessment of gold and uranium mine residue deposits on the Eastern Witwatersrand, South Africa. IGCP/SIDA Project 594, pp. 64-67. Czech Geological Survey, Inaugural Workshop, Kitwe, Zambia.
- [179] Şimşek, C. 2022. Açık ocak madenciliğinde su kaynaklarının yönetimine bağlı sorunlar (Management problems of water resources in open-pit mining). Journal of Underground Resources 11(22), pp. 25-40. [Online:] https:// dergipark.org.tr/en/download/article-file/2654381 [Accessed: 2023-11-30].
- [180] Tchaikovskaya O. and Bocharnikova, E. 2020. Luminescent properties of natural substances in solutions under low-dose radiation exposure. 7th International Congress on Energy Fluxes and Radiation Effects (EFRE), Tomsk, Russia, pp. 980-983, DOI: 10.1109/EFRE47760.2020.9241972.
- [181] Tombal, T.D. 2015. Investigation of the recovering of thorium with chemical solibilization methods from thorium ores in Turkey. MSc Thesis, Istanbul University, Institute of Graduate Studies in Sciences, İstanbul, Türkiye.
- [182] Tombal-Kara, T.D. 2020. Properties, production, usage and importance of thorium element as nuclear fuel (Toryum elementinin özellikleri, üretimi, kullanımı ve nükleer yakıt olarak önemi). Chapter 6 [In:] Academic Studies in the Field of Science and Mathematics, Gece Bookstore Publishing, Istanbul, pp. 103-127.
- [183] Tsvetkov, P.V. 2021. Management of the Nuclear Waste – Via Disposition or Transmutation. Encyclopedia of Nuclear Energy, pp. 465-477, DOI: 10.1016/B978-0-12-819725-7.00207-5.
- [184] URL-1. Nuclear Energy Agency (NEA). [Online:] https://www.oecd-nea.org/ [Accessed: 2023-11-30].
- [185] URL-2. Radionuclide basics: Thorium. United States Environmental Protection Agency (EPA). [Online:] https://www.epa.gov/radiation/radionuclide-basics-thorium [Accessed: 2023-11-30].
- [186] URL-3. Uranium mining overview. World Nuclear Association (WNA). [Online:] https://world-nuclear.org/information-library/nuclear-fuel-cycle/mining-of-uranium/uranium-mining-overview.aspx [Accessed: 2023-11-30].
- [187] URL-4. U.S. Environmental Protection Agency (EPA). [Online:] https://www.epa.gov/ [Accessed: 2023-11-30].
- [188] Uzun, A.D. 2016. Nuclear energy optimization: development of important energy policy imported for Turkey. PhD Thesis, Inonu University, Institute of Social Sciences, Department of Economics, Malatya, Türkiye.
- [189] Ünal, İ.H. 2014. Production stages of uranium from open-pit to reactor. Mining Türkiye Magazine 43, pp. 112-117. [Online:] https://www.mtmagaza.com/wp-content/uploads/2018/05/Madencilik-Turkiye-Dergisi-Sayi-43-b-34n656m78.pdf [Accessed: 2023-11-30] (in Turkish).
- [190] Ünal, İ.H. 2016. Thorium, the energy source of the future, and Türkiye›s potential. Mining Türkiye Magazine 53, pp. 76-78. [Online:] https://www.mtmagaza.com/wp-content/uploads/2018/05/Madencilik-Turkiye-Dergisi-Sayi-53-8745hgred.pdf [Accessed: 2023-11-30] (in Turkish).
- [191] Vestergaard, C. 2015a. Governing uranium globally. Danish Institute for International Studies (DIIS), Report No. 2015:09, Copenhagen. [Online:] https://www.econstor.eu/bitstream/10419/144724/1/848318978.pdf [Accessed: 2023-11-30].
- [192] Vestergaard, C. 2015b. Governing uranium in Australia. DIIS Research Report No. 2015:11. [Online:] https://www.files.ethz.ch/isn/194966/diisreport2015_11.pdf [Accessed: 2023-11-30].
- [193] Vilaça et al. 2022 – Vilaça, A.S.I., Simão, L., Montedo, O.R.K., Novaes de Oliveira, A.P. and Raupp-Pereira, F. 2022. Waste valorization of iron ore tailings in Brazil: Assessment metrics from a circular economy perspective. Resources Policy 75, DOI: 10.1016/j.resourpol.2021.102477.
- [194] von Oertzen, G. 2017. Radiation exposures at uranium mines – what are the risks. SAIMM – Uranium 2017 International conference, Swakopmund, Namibia.
- [195] Wade, P. and Coetzee, H. 2008. Risk assessment of uranium in selected gold mining areas in South Africa. [In:] Merkel, B.J., Hasche-Berger, A. (eds) Uranium, Mining and Hydrogeology, pp. 141-150, Springer, Berlin, Heidelberg, DOI: 10.1007/978-3-540-87746-2_21.
- [196] Waggitt, P. 1994. A review of worldwide practices for disposal of uranium mill tailings. Australian Government Publishing Service. Quoted from (Winde 2013).
- [197] Wang et al. 2018 – Wang, W.H., Luo, X.G., Wang, Z., Zeng, Y., Wu, F.Q. and Li, Z.X. 2018. Heavy metal and metalloid contamination assessments of soil around an abandoned uranium tailings pond and the contaminations’ spatial distribution and variability. International Journal of Environmental Research And Public Health 15(11), DOI: 10.3390/ijerph15112401.
- [198] Wang et al. 2021 – Wang, Z., Liu, Z., Yu, J., Wang, Y. and Zhou, L. 2021. Release behavior uranium and thorium in soil from a decommissioned uranium tailings in Jiangxi Province, China. Journal of Radioanalytical and Nuclear Chemistry 330, pp. 833-843, DOI: 10.1007/s10967-021-08030-1.
- [199] Wang et al. 2022 – Wang, Q., Huang, T., Du, J. and Zhou, L. 2022. Enhancement of uranium recycling from tailings caused by the microwave irradiation-induced composite oxidation of the Fe-Mn binary system. ACS Omega 7(28), pp. 24574-24586, DOI: 10.1021/acsomega.2c0239.
- [200] Wei et al. 2021 – Wei, W., Shi, K., Xie, Y., Yu, S., Li, J., Chen, M., Tang, Z., Zhu, A., Zhang, Q. and Liu, Y. 2021. Microwave vitrification of uranium tailings: Microstructure and mechanical property. Advances in Condensed Matter Physics, pp. 1-7, DOI: 10.1155/2021/5544835.
- [201] Wills, B.A. and Finch, J.A. 2016. Tailings Disposal. Chapter 16 [In:] Wills’ Mineral Processing Technology (Eighth Edition): An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, pp. 439-448, DOI: 10.1016/B978-0-08-097053-0.00016-9.
- [202] Winde, F. 2002. Stream pollution by adjacent tailing deposits and fluvial transport of dissolved uranium – dynamics and mechanisms investigated in mining areas of Germany, Southern Africa and Australia. [In:] Merkel, B.J., Planer-Friedrich, B., Wolkersdorfer, C. (eds) Uranium in the Aquatic Environment. DOI: 10.1007/978-3-642-55668-5_32.
- [203] Winde, F. 2006a. Challenges for sustainable water use in dolomitic mining regions of South Africa – A case study of uranium pollution Part I: Sources and Pathways. Physical Geography 27(4), pp. 333-347, DOI: 10.2747/0272-3646.27.4.333.
- [204] Winde, F. 2006b. Long-term impacts of gold and uranium mining on water quality in dolomitic regions – examples from the Wonderfonteinspruit catchment in South Africa. [In:] Merkel, B.J., Hasche-Berger, A. (eds) Uranium in the Environment, pp. 807-816, DOI: 10.1007/3-540-28367-6_83.
- [205] Winde, F. 2010. Uranium pollution of the Wonderfonteinspruit, 1997-2008 Part 1: Uranium toxicity, regional background and mining-related sources of uranium pollution. Water SA 36(3), pp. 239-256.
- [206] Winde, F. 2013. Uranium pollution of water – a global perspective on the situation in South Africa. [Online:] https://repository.nwu.ac.za/bitstream/handle/10394/10274/Winde_F.pdf [Accessed: 2023-11-30].
- [207] Winde, F. and de Villiers, A.B. 2002. Uranium contamination of streams by tailings deposits – case studies in the Witwatersrand gold mining area (South Africa). [In:] Merkel, B.J., Planer-Friedrich, B., Wolkersdorfer, C. (eds) Uranium in the Aquatic Environment, pp. 803-812, DOI: 10.1007/978-3-642-55668-5_94.
- [208] Winde, F. and Sandham, L.A. 2004. Uranium pollution of South African streams – An overview of the situation in gold mining areas of the Witwatersrand. GeoJournal 61, pp. 131-149, DOI: 10.1007/s10708-004-2867-4.
- [209] Wymer, D. 1999. Table of uranium concentrations in slimes dams of South African goldmines – based on the uranium concentration in ore, the amount of milled ore and the extend of extracted uranium. Johannesburg, unpublished. Quoted from (Winde 2013).
- [210] Xiong et al. 2019 – Xiong, X., Liu, X., Yu, I.K.M., Wang, L., Zhou, J., Sun, X., Rinklebe, J., Shaheen, S.M., Ok, Y.S., Lin, Z. and Tsang, D.C.W. 2019. Potentially toxic elements in solid waste streams: Fate and management approaches. Environmental Pollution 253, pp. 680-707, DOI: 10.1016/j.envpol.2019.07.012.
- [211] Xun et al. 2018 – Xun, Y., Zhang, X., Chaoliang, C., Luo, X. and Zhang, Y. 2018. Comprehensive evaluation of soil near uranium tailings, Beishan City, China. Bulletin of environmental contamination and toxicology 100(6), pp. 843-848, DOI: 10.1007/s00128-018-2330-8.
- [212] Yavuz, N.K. 2012. Energy, Environment and Law Graduate Course Notes (2012). ITU Energy Institute.
- [213] Yıldırım, S. and Kantarcı, T. 2022. A review on sustainability policies of businesses: Recycling and waste reduction. Journal of Recycling Economy & Sustainability Policy 1(1), pp. 10-17. [Online:] https://respjournal.com/index.php/pub/article/view/1 [Accessed: 2023-11-30].
- [214] Yıldırım et al. 2019 – Yıldırım, S., Yıldırım, D.Ç. and Esen, Ö. 2023. Environmental protection and environmental protection expenditure in developing countries: A case of Turkey. [In:] Handbook of Research on Current Advances and Challenges of Borderlands, Migration, and Geopolitics, DOI: 10.4018/978-1-6684-7020-6.ch005.
- [215] Yıldız, N. 2014. Mineral processing and enrichment (Cevher hazırlama ve zenginleştirme), ISBN: 978-975-96779-1-6, Ankara, Türkiye (in Turkish).
- [216] Yıldız, N. 2017a. Uranium and thorium. TMMOB Chamber of Mining Engineers, Ankara. [Online:] https://api.maden.org.tr/uploads/portal/resimler/ekler/5b83e3cd2b09cf4_ek.pdf [Accessed: 2023-11-30].
- [217] Yıldız, T.D. 2020a. Evaluation of forestland use in mining operation activities in Turkey in terms of sustainable natural resources. Land Use Policy 96, DOI: 10.1016/j.landusepol.2020.104638.
- [218] Yıldız, T.D. 2020b. Waste management costs (WMC) of mining companies in Turkey: Can waste recovery help meeting these costs? Resources Policy 68, DOI: 10.1016/j.resourpol.2020.101706.
- [219] Yıldız et al. 2016 – Yıldız, T.D., Samsunlu, A. and Kural, O. 2016. Urban development and mining in Istanbul – Ağaçli Coal Field and its rehabilitation. (SWEMP 2016) Proceeding of 16th International Symposium on Environmental Issues and Waste Management In Energy and Mineral Production, pp. 1-11.
- [220] Yıldız et al. 2017 – Yıldız, T.D., Güner, O. and Kural, O. 2017. The effects of the mineral waste regulation in Turkey on the mining sector. 25th International Mining Congress and Exhibition, pp. 457-472. [Online:] https://www.researchgate.net/publication/329962843_Turkiye’de_Maden_Atiklari_Yonetmeligi’nin_Madencilik_Sektorune_Etkileri [Accessed: 2023-11-30].
- [221] Yıldız et al. 2024 – Yıldız, T.D., Güner, O. and Kural, O. 2024. Effects of EU-compliant Mining Waste Regulation on Turkish mining sector: A review of characterization, classification, storage, management, recovery of mineral wastes. Resources Policy 90, DOI: 10.1016/j.resourpol.2024.104836.
- [222] Yi et al. 2018 – Yi, L., Mu, H., Hu, N., Sun, J., Yin, J., Dai, K., Long, D. and Ding, D. 2018. Differential expression of NPM, GSTA3, and GNMT in mouse liver following long-term in vivo irradiation by means of uranium tailings. Bioscience reports 38(5), DOI: 10.1042/BSR20180536.
- [223] Yong-ming, Z. 2011. Environmental impact of radionuclides from uranium tailings. Journal of East China Institute of Technology, Nat. Sci. 34(2), pp. 155-159.
- [224] Zhang et al. 2023 – Zhang, J., Qin, S., Yang, M., Zhang, X., Zhang, S. and Yu, F. 2023. Alpha‐emitters and targeted alpha therapy in cancer treatment. iRADIOLOGY 1(3), pp. 245-261, DOI: 10.1002/ird3.30.
- [225] Zhong-qiu, C. 2012. Recycling of wastes from uranium mining and metallurgy and recovery of useful resources in China. Uranium Mining and Metallurgy, International Nuclear Information System (INIS).
- [226] Zhou et al. 2017 – Zhou, B., Li, Z. and Zhao, Y. 2017. Evaluation of externalities associated with rare earth exploitation at Bayan Obo. Proceedings of the 8th International Conference on Sustainable Development in the Minerals Industry, pp. 35-40, DOI: 10.15273/gree.2017.02.007.
- [227] Zhou et al. 2021 – Zhou, F., Xiao, Y., Guo, M., Tang, Y., Zhang, W. and Qiu, R. 2021. Selective leaching of rare earth elements from ion-adsorption rare earth tailings: A synergy between CeO2 reduction and Fe/Mn stabilization. Environmental Science & Technology 55(16), pp. 11328-11337, DOI: 10.1021/acs.est.1c03106.
- [228] Zhu et al. 2015 – Zhu, Z., Pranolo, Y. and Cheng, C.Y. 2015. Separation of uranium and thorium from rare earths for rare earth production – A review. Minerals Engineering 77, pp. 185-196, DOI: 10.1016/j.mineng.2015.03.012.
- [229] Zupunski et al. 2023 – Zupunski, L., Street, R., Ostroumova, E., Winde, F., Sachs, S., Geipel, G., Nkosi, V., Bouaoun, L., Haman, T., Schüz, J. and Mathee, A. 2023. Environmental exposure to uranium in a population living in close proximity to gold mine tailings in South Africa. Journal of Trace Elements in Medicine and Biology 77, DOI: 10.1016/j.jtemb.2023.127141.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2e906652-05f8-4abf-bdef-00836372afd1