Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | Vol. 23, Fasc. 2 | 369--387
Tytuł artykułu

On the local time of multiparameter symmmetric stable processes. Regularity and limit theorem in Besov spaces

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let X = (Xz, z ϵ TN = [0, l]N) be a symmetric α-stable process, 1 < α ≤ 2. Based on a Kolmogorov type continuity theorem we show Hölder conditions in Lp-norms for the local time of X with respect to the space and time variables, by distinguishing the cases where the time variables do or do not meet the axes. Weak convergence of the occupation integral is proved.
Wydawca

Rocznik
Strony
369--387
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Cadi Ayyad University, FSSM, Department of Mathematics (LPS), P.B.O. 2390, Marrakesh, Morocco, boufoussi@ucam.ac.ma
autor
  • Université Henri Poincaré Nancy I, Institut Elie Cartan, B.P. 239, 54506 Vandoeuvre-Lès-Nancy, France, dozzi@iecn.u-nancy.fr
Bibliografia
  • [1] 5. Bergh and J. Löfstrom, Interpolation Spaces. An Introduction, Springer, 1976.
  • [2] S. M. Berman, Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc. 137 (1969), pp. 277-299.
  • [3] S. M. Berman, Gaussian processes with stationary increments: Local times and sample function properties, Ann. Math. Statist. 41 (1970), pp. 1260-1272.
  • [4] S. M. Berman, Gaussian sample functions: uniform dimension and Hölder conditions nowhere, Nagoya Math. J. 46 (1972), pp. 63-86.
  • [5] S. M. Berman, Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J. 23 (1973), pp. 69-94.
  • [6] B. Boufoussi and A. Kamont, Temps local brownien et spaces de Besov anisotropiques, Stoch. Stoch. Reports 61 (1997), pp. 89-105.
  • [7] B. Boufoussi and E. Lakhel, Un résultat d'approximation de la solution d'une EDPS en norme de Besov anisotropique, C. R. Acad. Sci. Paris 330 (2000), pp. 883-888.
  • [8] B. Boufoussi and Y. Ouknine, Régularité du temps local du processus symétrique stable en nome de Besov, Stoch. Stoch. Reports 66 (3-4) (1999), pp. 167-175.
  • [9] B. Boufoussi and B. Roynette, Le temps local brownien appartient p.s. à l'espace de Besov B1/2, p,∞, C. R. Acad. Sci. Paris 316 (1993), pp. 843-848.
  • [10] H. Brezis, Analyse fonctionnelle. Théorie et applications, Masson, 1993.
  • [11] R. Cairoli and J. B. Walsh, Stochastic integrals in the plane, Acta Math. 134 (1975), pp. 111-183.
  • [12] Z. Ciesielski, On the isomorphism of the space Hα, and m, Bull. Acad. Pol. Sci. 8 (1960), pp. 217-222.
  • [13] Z. Ciesielski, G. Kerkyacharian and B. Roynette, Quelgues espaces fonctionnels associés à des processus gaussiens, Studia Math. 107 (1993), pp. 171-204.
  • [14] Y. Davydov, Local times of multi-parameter random process, Theory Probab. Appl. 23 (1978), pp. 573-583.
  • [15] M. Dozzi, On the local time of the multi-parameter Wiener process and the asymptotic behaviour of an associated integral, Stochastics 25 (1988), pp. 155-169.
  • [16] M. Dozzi, Occupation density and sample path properties of N-parameter processes, Lecture Notes in Math. 1802 (2003), pp. 127-166.
  • [17] W. Ehm, Sample function properties of multi-parameter stable processes, Z. Wahrsch. verw. Gebiete 56 (1981), pp. 195-228.
  • [18] D. Geman and J. Horowitz Occupation densities, Ann. Probab. 8 (1980), pp. 1-67.
  • [19] P. Imkeller, Stochastic analysis and local time for (N, d)-Wiener processes, Ann. Inst. H. Poincaré 20 (1984), pp. 75-101.
  • [20] A. Kamont, Isomorphism of some anisotropic Besov and sequence spaces, Studia Math. 110 (2) (1994), pp. 169-189.
  • [21] A. Kamont, On the fractional anisotropic Wiener field, Probab. Math. Statist. 16 (1) (1996), pp. 85-98.
  • [22] P. Lévy, Sur certains processus stochastiques homogènes, Compositio Math. 7 (1939), pp. 283-339.
  • [23] D. Nualart, Weak convergence to the law of two-parameter continuous processes, Z. Wahrsch. verw. Gebiete 55 (1981), pp. 255-259.
  • [24] H. Trotter, A property of Brownian motion paths, Illinois J. Math. 2 (1958), pp. 425-433.
  • [25] M. E. Vares, Local times for two-parameter Lévy processes, Stochastic Process. Appl. 15 (1983), pp. 59-82.
  • [26] J. B. Walsh, The local time of the Brownian sheet, Astérisque 52-53 (1978), pp. 47-61.
  • [27] M. Yor, Le drap brownien comme limite en loi de temps locaux linéaires, in: Séminaire de Probabilités XVII, Lecture Notes in Math. 986 (1983), pp. 89-105.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2e59ef17-8024-4c8a-b5df-cdcf9c704b18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.