Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 50, nr 2 | 41--60
Tytuł artykułu

Optimization of A constructed wetland-microbial fuel cell system for Cr(VI) removal from wastewater and power generation performance

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new type of bioelectrochemical system features a constructed wetland (CW) coupled with a microbial fuel cell (MFC) to treat Cr(VI) wastewater while generating electricity. The optimal operating parameters for treating wastewater containing Cr(VI) are discussed. The results show that the CW- -MFC system is more effective in the treatment of Cr(VI)-containing wastewater and generating electricity. A COD concentration of 300 mg/dm3 corresponded to the greatest COD and Cr(VI) removal rates with a maximum power density of 505.62 mW/m3, whereas a Cr(VI) concentration of 80 mg/dm3 yielded the greatest COD removal rate, with a maximum power density of 484.43 mW/m3. A hydraulic retention time (HRT) of 3 days yielded the largest pollutant removal rates with a maximum power density of 479.21 mW/m3. Considering that the comprehensive operating conditions of CW-MFC are based on planting plants, the COD concentration is 300 mg/dm3, the Cr(VI) concentration is 80 mg/dm3, and the HRT is 3 days. The abundance of electrogenic bacteria Geobacter and metal dissimilatory reducing bacteria Acinetobacter in CW-MFC is higher than that in the control group. The results of this study provide theoretical guidance for determining the optimal operating conditions and energy recovery of the CW-MFC system for treating chromium wastewater.
Wydawca

Rocznik
Strony
41--60
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China.
  • Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang 262700, China
autor
  • School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China.
  • Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang 262700, China
autor
  • School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China.
  • Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang 262700, China
  • College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China, youshaohong@glut.edu.cn
  • Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology of Guilin University of Technology, Guilin 541004, China
Bibliografia
  • [1] DERMOU E., VELISSARIOU A., XENOS D., VAYENAS D.V., Biological chromium(VI) reduction using a trickling filter, J. Hazard. Mater., 2005, 126 (1), 78–85. DOI: 10.1016/j.jhazmat.2005.06.008.
  • [2] LIU X., CHEN X., ZHANG X., GUO H., ZHANG C., ZANG X., LI B., Quantifying the influence of soil factors on the migration of chromium (VI), Proc. Saf. Environ. Prot., 2021, 155, 32–40. DOI: 10.1016 /j.psep.2021.09.005.
  • [3] LI M., ZHOU S., XU Y., LIU Z., MA F., ZHI L., ZHOU X., Simultaneous Cr(VI) reduction and bioelectricity generation in a dual chamber microbial fuel cell, Chem. Eng. J., 2018, 334, 1621–1629. DOI: 10.1016/j.cej.2017.11.144.
  • [4] BARRERA-DÍAZ C.E., LUGO-LUGO V., BILYEU B., A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction, J. Hazard. Mater., 2012, 223 (2), 1–12. DOI: 10.1016/j.jhaz-mat. 2012.04.054.
  • [5] GONG Y., GAI L., TANG J., FU J., WANG Q., ZENG E.Y., Reduction of Cr(VI) in simulated groundwater by FeS coated iron magnetic nanoparticles, Sci. Total Environ., 2017, 595, 743–751. DOI: 10.1016 /j.scitotenv.2017.03.282.
  • [6] SUN Y., YUE Q., MAO Y., GAO B., GAO Y., HUANG L., Enhanced adsorption of chromium onto activated carbon by microwave-assisted H3PO4 mixed with Fe/Al/Mn activation, J. Hazard. Mater., 2014, 265, 191–200. DOI: 10.1016/j.jhazmat.2013.11.057.
  • [7] YUAN Y., YANG S., ZHOU D., WU F., A simple Cr(VI)–S(IV)–O2 system for rapid and simultaneous reduction of Cr(VI) and oxidative degradation of organic pollutants, J. Hazard. Mater., 2016, 307, 294–301. DOI: 10.1016/j.jhazmat.2016.01.012.
  • [8] KAZEMI M., JAHANSHAHI M., PEYRAVI M., Hexavalent chromium removal by multilayer membrane assisted by photocatalytic couple nanoparticle from both permeate and retentate, J. Hazard. Mater., 2018, 344, 12–22. DOI: 10.1016/j.jhazmat.2017.09.059.
  • [9] WANG Q., LV R., RENE E.R., QI X., HAO Q., DU Y., ZHAO C., XU F., KONG Q., Characterization of microbial community and resistance gene (CzcA) shifts in up-flow constructed wetlands-microbial fuel cell treating Zn(II) contaminated wastewater, Biores. Technol., 2020, 302, 122867. DOI: 10.1016 /j.biortech.2020.122867.
  • [10] ZHONG F., YU C., CHEN Y., WU X., WU J., LIU G., ZHANG J., DENG Z., CHENG S., Nutrient removal process and cathodic microbial community composition in integrated vertical-flow constructed wet-land. Microbial fuel cells filled with different substrates, Front. Microbiol., 2020, 11, 1896. DOI: 10.3389/fmicb.2020.01896.
  • [11] WANG L., XU D., ZHANG Q., LIU T., TAO Z., Simultaneous removal of heavy metals and bioelectricity generation in microbial fuel cell coupled with constructed wetland: an optimization study on substrate and plant types, Environ. Sci. Pollut. Res., 2022, 29 (1), 768–778. DOI: 10.1007/s11356-021-15688-3.
  • [12] ZHAO C., SHANG D., ZOU Y., DU Y., WANG Q., XU F., REN L., KONG Q., Changes in electricity production and microbial community evolution in constructed wetland-microbial fuel cell exposed to wastewater containing Pb(II), Sci. Total Environ., 2020, 732. DOI: 139127.10.1016/j.scitotenv.2020.139127.
  • [13] FANG Z., CAO X., LI X., WANG H., LI X., Electrode and azo dye decolorization performance in microbial-fuel-cell-coupled constructed wetlands with different electrode size during long-term wastewater treatment, Biores. Technol., 2017, 238, 450–460. DOI: 10.1016/j.biortech.2017.04.075.
  • [14] WANG J., SONG X., WANG Y., ABAYNEH B., DING Y., YAN D., BAI J., Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell, Biores. Technol., 2016, 221, 697–702. DOI: 10.1016/j.biortech.2016.09.116.
  • [15] TAMTA P., RANI N., YADAV A., Enhanced wastewater treatment and electricity generation using stacked constructed wetland–microbial fuel cells, Environ. Chem. Lett., 2020, 18. DOI: 10.1007/s10311-020 -00966-2.
  • [16] LI W., QUAN X., CHEN L., ZHENG Y., Application of slow-release carbon sources embedded in polymer for stable and extended power generation in microbial fuel cells, Chemosphere, 2020, 244, 125515. DOI: 10.1016/j.chemosphere.2019.125515.
  • [17] WEN H., ZHU H., XU Y., YAN B., SHUTES B., BAÑUELOS G., WANG X., Removal of sulfamethoxazole and tetracycline in constructed wetlands integrated with microbial fuel cells influenced by influent and operational conditions, Environ. Poll., 2021, 272, 115988. DOI: 10.1016/j.envpol.2020.115988.
  • [18] MATSENA M.T., TICHAPONDWA S.M., CHIRWA E.M.N., Improved chromium(VI) reduction performance by bacteria in a biogenic palladium nanoparticle enhanced microbial fuel cell, Electrochim. Acta, 2021, 368, 137640. DOI: 10.1016/j.electacta.2020.137640.
  • [19] SONG H.-L., LI H., ZHANG S., YANG Y.-L., ZHANG L.-M., XU H., YANG X.-L., Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands: Effects of circuit operation mode and hydraulic retention time, Chem. Eng. J., 2018, 350, 920–929. DOI: 10.1016/j.cej.2018.06.035.
  • [20] FENG Y., WANG X., LOGAN B.E., LEE H., Brewery wastewater treatment using air-cathode microbial fuel cells, Appl. Microbiol. Biotechnol., 2008, 78 (5), 873–880. DOI: 10.1007/s00253-008-1360-2.
  • [21] LIU X., LIU Y., GUO X., LU S., WANG Y., ZHANG J., GUO W., XI B., High degree of contaminant removal and evolution of microbial community in different electrolysis-integrated constructed wetland systems, Chem. Eng. J., 2020, 388, 124391. DOI: 10.1016/j.cej.2020.124391.
  • [22] WANG J., SONG X., WANG Y., BAI J., BAI H., YAN D., CAO Y., LI Y., YU Z., DONG G., Bioelectricity generation, contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell, Biores. Technol., 2017, 245, 372–378. DOI: 10.1016/j.biortech.2017.08.191.
  • [23] YOSHIE S., MAKINO H., HIROSAWA H., SHIROTANI K., TSUNEDA S., HIRATA A., Molecular analysis of halophilic bacterial community for high-rate denitrification of saline industrial wastewater, Appl. Microbiol. Biotechnol., 2006, 72 (1), 182–189. DOI: 10.1007/s00253-005-0235-z.
  • [24] GUPTA S., SRIVASTAVA P., PATIL S.A., YADAV A.K., A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: Potential applications and challenges, Biores. Technol., 2021, 320, 124376. DOI: 10.1016/j.biortech.2020.124376.
  • [25] PRADHAN D., SUKLA L.B., SAWYER M., RAHMAN P.K.S.M., Recent bioreduction of hexavalent chromium in wastewater treatment: A review, J. Ind. Eng. Chem., 2017, 55, 1–20. DOI: 10.1016/j.jiec. 2017.06.040.
  • [26] JIANG D., LI B., JIA W., LEI Y., Effect of Inoculum Types on Bacterial Adhesion and Power Production in Microbial Fuel Cells, Appl. Biochem. Biotechnol., 2009, 160 (1), 182. DOI: 10.1007/s12010-009-8541-z.
  • [27] GORBY Y., YANINA S., MCLEAN J., ROSSO K., MOYLES D., DOHNALKOVA A., BEVERIDGE T., CHANG I., KIM B., KIM K., CULLEY D., REED S., ROMINE M., SAFFARINI D., HILL E., SHI L., ELIAS D., KENNEDY D., PINCHUK G., FREDRICKSON J., Electrically conductive bacterial nanowires produced by Shewanella one idensis strain MR-1 and other microorganisms, Proc. Nat. Acad. Sci. U.S.A., 2006, 103, 11358–11363. DOI: 10.1073/pnas.0604517103.
  • [28] WANG J., DENG H., WU S.-S., DENG Y.-C., LIU L., HAN C., JIANG Y.-B., ZHONG W.-H., Assessment of abundance and diversity of exoelectrogenic bacteria in soil for various land use types, CATENA, 2019, 172, 572–580. DOI: 10.1016/j.catena.2018.09.028.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2d7837eb-d20b-49b5-af61-f66087be726d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.