Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 17, nr 1-2 | 169--172
Tytuł artykułu

Surface modification of PBO fiber by electrostatic discharge for composites

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: PBO fibers provide great potential applications as reinforcement fibers for advanced composites due to the excellent thermal resistance and specific stiffness and strength. However, the interfacial adhesion between reinforcing fiber and polymer matrix in a composite system is a primary factor for the stress transfer from matrix to fiber. In this paper, the effects of surface treatment on the modification of PBO fiber and its composite materials have been investigated using electrostatic discharge under atmospheric pressure. The surface treatment process has been designed to improve fiber/matrix interfacial bonding quality while providing minimum alteration to the bulk characteristics of the reinforcement fiber. Design/methodology/approach: Both as-spun (AS) and high-modulus (HM) PBO fibers were surface treated and characterized in this study. The characterization techniques included scanning electron microscopy, MTS tensile tester, dynamic contact angle analysis system and microbond pull-out tests. Findings: The results showed that PBO fibers exhibited -10% reduction in tensile strength after the proposed treatment process. The AS fiber surface free energy could be increased from 49.90 mJ/m2 to 65.42 mJ/m2(+31%) and the HM fiber surface free energy could be increased from 46.20 mJ/m2 to 65.36 mJ/m2 (+41%). The interfacial shear strength between PBO fiber and the epoxy matrix was improved to 41.6 MPa (+20%) for AS fiber system, and it improved to 40.1 MPa (+23%) for HM fiber system. The composite failure mode also shifted from fiber/matrix interface adhesive failure to partly cohesive failure. Research limitations/implications: The composite interfacial shear strength was improved through the increased surface free energy of PBO fiber. The more cohesive failure mode allowed more energy to be dissipated during failure. Originality/value: The proposed electrostatic discharge treatment process could improve the surface characteristics of PBO fiber and the applications in advanced composites.
Wydawca

Rocznik
Strony
169--172
Opis fizyczny
Bibliogr. 12 poz., rys., tab., wykr.
Twórcy
autor
  • Advanced Materials Laboratory and Institute of Electro-Optical Engineering Chang Gung University, Kweisan, Taoyuan 333, Taiwan R.O.C., wu@mail.cgu.edu.tw
autor
  • Advanced Materials Laboratory and Institute of Electro-Optical Engineering Chang Gung University, Kweisan, Taoyuan 333, Taiwan R.O.C.
Bibliografia
  • [1] S. Bourbigot and X. Flambard, Heat resistance and flammability of high performance fibres: A review, Fire and Materials, 26 (2002) 155-168.
  • [2] F. Larsson and L. Svensson, Carbon, polyethylene and PBO hybrid fibre composites for structural lightweight armour, Composites Part A: Applied Science and Manufacturing, 33 (2002) 221-231.
  • [3] G. M. Wu and Y. T. Shyng, Surface modification and interfacial adhesion of rigid rod PBO fibre by methanesulfonic acid treatment, Composites Part A: Applied Science and Manufacturing, 35 (2004) 1291-1300.
  • [4] R. J. Davies, M. A. Montes-Moran, C. Riekel and R. J. Young, Single fibre deformation studies of poly(p-phenylene benzobisoxazole) fibres: Part I. Dertermination of crystal modulus, Journal of Materials Science, 36 (2001) 3079-3087.
  • [5] E. David, A. Lazar and A. Armeanu, Surface modification of polytetrafluoroethylene for adhesive bonding, Journal of Materials Processing Technology, 157 (2004) 284-289.
  • [6] D. Sun and G. K. Stylios, Fabric surface properties affected by low temperature plasma treatment, Journal of Materials Processing Technology, 173 (2006) 172-177.
  • [7] L. Carrino, G. Moroni and W. Polini, Cold plasma treatment of polypropylene surface: a study on wettability and adhesion, Journal of Materials Processing Technology, 121, (2002) 373-382.
  • [8] G. S. Sheu, S. S. Shyu, Surface properties and interfacial adhesion studies of aramid fibres modified by gas plasmas, Composites Science and Technology, 52 (1994) 489-497.
  • [9] L. Szazdi, J. Gulyas, B. Pukanszky, Electrochemical oxidation of carbon fibres: adsorption of the electrolyte and its effect on interfacial adhesion, Composites Part A: Applied Science and Manufacturing, 33 (2002) 1361-1365.
  • [10] G. M. Wu, C. H. Hung, J. H. You and S. J. Liu, Surface modification of reinforcement fibers for composites by acid treatments, Journal of Polymer Research, 11 (2004) 31-36.
  • [11] G. M. Wu, J. M. Schultz, D. J. Hodge, F. N. Cogswell, Effects of treatment on the surface composition and energy of carbon fibers, Polymer Composites, 16 (1995) 284-287.
  • [12] R. Zulkifli, L. K. Fatt, C. H. Azhari and J. Sahari, Interlaminar fracture properties of fibre reinforced natural rubber/polypropylene composites, Journal of Materials Processing Technology, 128 (2002) 33-37.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2d64f11d-1e21-4018-9de3-55078dacdfcb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.