Czasopismo
2022
|
Vol. 22, no. 2
|
art. no. e92, 1--13
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Majority of structural analysis on functionally graded materials utilized Voigt and Mori-Tanaka micromechanical modelling. The current article is focused on free vibration response of inhomogeneous nano-size plate resting on elastic foundations against different micromechanical models (i.e., Reuss, Tamura, and LRVE). For the elastic foundation type, Winkler, Pasternak, and Kerr mediums are modelled one by one. The nanoplate is modelled based on a quasi-3D shear deformation plate theory which is in relation with general strain gradient theory by employing Hamilton principle, then the model is solved analytically via Navier solution procedure. This exact model determines fourfold coupled (stretching-axial-bending-shear) response with estimating softening-stiffness and hardening-stiffness mechanisms of nano-sized systems. Finally, numerical results are provided to represent the influence of size-dependent effects on vibrations of embedded nanoplate obtained through different micromechanical models.
Czasopismo
Rocznik
Tom
Strony
art. no. e92, 1--13
Opis fizyczny
Bibliogr. 42 poz., il., tab., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran, shahsavari.davood@miau.ac.ir
autor
- Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran, behrouz.karami@miau.ac.ir
Bibliografia
- 1. Gasik MM. Micromechanical modelling of functionally graded materials. Comput Mater Sci. 1998;13:42-55.
- 2. Akbarzadeh A, Abedini A, Chen Z. Effect of micromechanical models on structural responses of functionally graded plates. Compos Struct. 2015;119:598-609.
- 3. Klusemann B, Svendsen B. Homogenization methods for multiphase elastic composites, Technische Mechanik. Sci J Fundam Appl Eng Mech. 2010;30:374-386.
- 4. Karami B, Shahsavari D, Janghorban M, Li L. Influence of homogenization schemes on vibration of functionally graded curved microbeams. Compos Struct. 2019;216:67-79.
- 5. Ghayesh MH, Farajpour A. A review on the mechanics of functionally graded nanoscale and microscale structures. Int J Eng Sci. 2019;137:8-36.
- 6. Narendar S. Buckling analysis of micro-/nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects. Compos Struct. 2011;93:3093-103.
- 7. Civalek O, Avcar M. Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Eng Comput. 2020:1-33.
- 8. Carrera E, Brischetto S, Cinefra M, Soave M. Effects of thickness stretching in functionally graded plates and shells. Compos B Eng. 2011;42:123-133.
- 9. Neves A, Ferreira A, Carrera E, Roque C, Cinefra M, Jorge R, Soares C. A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos B Eng. 2012;43:711-725.
- 10. Thai H-T, Kim S-E. A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates. Compos Struct. 2013;99:172-180.
- 11. Shahsavari D, Shahsavari M, Li L, Karami B. A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerosp Sci Technol. 2018;72:134-149.
- 12. Salehirozveh M, Dehghani P, Zimmermann M, Roy VA, Heidari H. Graphene field effect transistor biosensors based on aptamer for amyloid-β detection. IEEE Sens J. 2020;20:12488-94.
- 13. Lam DC, Yang F, Chong A, Wang J, Tong P. Experiments and theory in strain gradient elasticity. J Mech Phys Solids. 2003;51:1477-1508.
- 14. Aifantis EC. On the microstructural origin of certain inelastic models. J Eng Mater Technol. 1984;106:326-330.
- 15. Aifantis EC. The physics of plastic deformation. Int J Plast. 1987;3:211-247.
- 16. Alipour M, Shariyat M. Nonlocal zigzag analytical solution for Laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores. Arch Civ Mech Eng. 2019;19:1211-1234.
- 17. Arefi M, Civalek O. Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory. Arch Civ Mech Eng. 2020;20:1-17.
- 18. Civalek O, Uzun B, Yaylı MO, Akgoz B. Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur Phys J Plus. 2020;135:1-28.
- 19. Akgoz B, Civalek O. Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J Vib Control. 2014;20:606-16.
- 20. Ghayesh MH, Amabili M, Farokhi H. Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int J Eng Sci. 2013;63:52-60.
- 21. Akgoz B, Civalek O. A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 2015;226:2277-94.
- 22. Huang Y, Karami B, Shahsavari D, Tounsi A. Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Arch Civ Mech Eng. 2021;21:1-15.
- 23. Civalek O, Dastjerdi S, Akbaş ŞD, Akgoz B. Vibration analysis of carbon nanotube‐reinforced composite microbeams. Math Methods Appl Sci. 2021.
- 24. Lim C, Zhang G, Reddy J. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids. 2015;78:298-313.
- 25. Gholipour A, Ghayesh MH, Hussain S. A continuum viscoelastic model of Timoshenko NSGT nanobeams. Eng Comput. 2020:1-16.
- 26. Karami B, Shahsavari D. On the forced resonant vibration analysis of functionally graded polymer composite doubly-curved nanoshells reinforced with graphene-nanoplatelets. Comput Methods Appl Mech Eng. 2020;359:112767.
- 27. Xu X, Shahsavari D, Karami B. On the forced mechanics of doubly-curved nanoshell. Int J Eng Sci. 2021;168:103538.
- 28. Eyvazian A, Shahsavari D, Karami B. On the dynamic of graphene reinforced nanocomposite cylindrical shells subjected to a moving harmonic load. Int J Eng Sci. 2020;154:103339.
- 29. Karami B, Shahsavari D, Janghorban M. Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory. Mech Adv Mater Struct. 2018;25:1047-57.
- 30. Shahverdi H, Barati MR. Vibration analysis of porous functionally graded nanoplates. Int J Eng Sci. 2017;120:82-99.
- 31. Chi S-H, Chung Y-L. Mechanical behavior of functionally graded material plates under transverse load—part I: analysis. Int J Solids Struct. 2006;43:3657-74.
- 32. Hill R. Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour. J Mech Phys Solids. 1964;12:199-212.
- 33. Zimmerman RW. Behavior of the Poisson ratio of a two-phase composite material in the high-concentration limit. Appl Mech Rev. 1994;47:S38-44.
- 34. Gasik MM, Lilius RR. Evaluation of properties of W Cu functional gradient materials by micromechanical model. Comput Mater Sci. 1994;3:41-49.
- 35. Eringen AC, Edelen D. On nonlocal elasticity. Int J Eng Sci. 1972;10:233-248.
- 36. Eringen AC. Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci. 1972;10:425-435.
- 37. Papargyri-Beskou S, Polyzos D, Beskos D. Wave dispersion in gradient elastic solids and structures: a unified treatment. Int J Solids Struct. 2009;46:3751-9.
- 38. Karami B, Shahsavari D, Janghorban M. On the dynamics of porous doubly-curved nanoshells. Int J Eng Sci. 2019;143:39-55.
- 39. Karami B, Janghorban M, Tounsi A. Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Struct. 2018;129:251-264.
- 40. Karama M, Afaq K, Mistou S. A new theory for laminated composite plates. Proc Inst Mech Eng Part L J Mater Des Appl. 2009;223:53-62.
- 41. Ansari R, Shojaei MF, Shahabodini A, Bazdid-Vahdati M. Threedimensional bending and vibration analysis of functionally graded anoplates by a novel differential quadrature-based approach. Compos Struct. 2015;131:753-764.
- 42. Panyatong M, Chinnaboon B, Chucheepsakul S. Free vibration analysis of FG nanoplates embedded in elastic medium based on second-order shear deformation plate theory and nonlocal elasticity. Compos Struct. 2016;153:428-441.
- 43. Benahmed A, Houari MSA, Benyoucef S, Belakhdar K, Tounsi A. A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation. Geomech Eng. 2017;12:9-34.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2d5352c0-fdbc-4614-9df3-357940d6087a