Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 23 | 223--228
Tytuł artykułu

Identification of parameters of the fractional Maxwell model

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Symposium Vibrations In Physical Systems (23 ; 28-31.05.2008 ; Będlewo koło Poznania ; Polska)
Języki publikacji
EN
Abstrakty
EN
The passive dampers are often modeled using the either classical or fractional rheological models. An important problem, bounded with the fractional models, is an estimation of the model parameters from the experimental data. The process of parameter identification is an inverse problem which is underdetermined and can be ill conditioned. The new method of parameters identification of the fractional Maxwell model is proposed. The parameters are estimated using results obtained from dynamical tests. Results of example calculation based on artificial and experimental data are presented.
Wydawca

Rocznik
Tom
Strony
223--228
Opis fizyczny
Bibliogr. 12 poz., wykr.
Twórcy
  • Poznan University of Technology, Institute of Structural Engineering, 60-965 Poznań, ul. Piotrowo 5
Bibliografia
  • 1. Christopoulos C., Filiatrault A., Principles of passive supplemental damping and seismic isolation, IUSS Press, Pavia, Italy, 2006.
  • 2. S. W. Park, Analytical modeling of viscoelastic dampers for structural and vibration control, Int. J. of Solids and Struct., 38 (2001) 8065 – 8092.
  • 3. A. Palmeri, F. Ricciardelli, A. De Luca, G. Muscolino, State space formulation for linear viscoelastic dynamic systems with memory, J. of Engng Mech., 129 (2003) 715 – 724.
  • 4. S. Gerlach, A. Matzenmiller, Comparison of numerical methods for identification of viscoelastic line spectra from static test data, Inter. J. for Numer. Meth. in Engng, 63 (2005) 428 – 454.
  • 5. T. Pritz, Analysis of four-parameter fractional derivative model of real solid materials, J. of Sound and Vibr., 195 (1996) 103 – 115.
  • 6. R. L. Bagley, P. J. Torvik, Fractional calculus – a different approach to the analysis of viscoelastically damped structures, AIAA J., 27 (1989) 1412 – 17.
  • 7. A. Schmidt, L. Gaul, Finite element formulation of viscoelastic constitutive equations using fractional time derivatives, J. Nonlin. Dyn., 29 (2002) 37 – 55.
  • 8. A. Aprile, J. A. Inaudi, J. M. Kelly, Evolutionary Model of Viscoelastic Dampers for Structural Applications, J. of Engng Mech., 123 (1997) 551 – 560.
  • 9. N. Makris, M. C. Constantinou, Fractional-derivative Maxwell model for viscous dampers, J. of Struct. Engng, 117 (1991) 2708 – 2724.
  • 10. J. Honerkamp, Ill-posed problem in rheology, Rheol. Acta, 28 (1989), 363 – 71.
  • 11. T. Beda, Y. Chevalier, New method for identifying rheological parameter for fractional derivative modeling of viscoelastic behavior, Mech. of Time- Dependent Mater., 8 (2004) 105 – 118.
  • 12. L. Podlubny, Fractional Differential equations, Academic Press, 1999.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2d50c286-ab6b-4578-84ed-2a2e4e4fb808
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.