Warianty tytułu
Języki publikacji
Abstrakty
Introduction: The accuracy of the cross-calibration procedure depends on ionization chamber type, both used as reference one and under consideration. Also, the beam energy and phantom medium could influence the precision of cross calibration coefficient, resulting in a systematic error in dose estimation and thus could influence the linac beam output checking. This will result in a systematic mismatch between dose calculated in treatment planning system and delivered to the patient. Material and methods: The usage of FC65-G, CC13 and CC01 thimble reference chambers as well as 6, 9, and 15 MeV electron beams has been analyzed. A plane-parallel PPC05 chamber was calibrated since scarce literature data are available for this dosimeter type. The influence of measurement medium and an effective point of measurement (EPOM) on obtained results are also presented. Results: Dose reconstruction precision of ~0.1% for PPC05 chamber could be obtained when cross-calibration is based on a thimble CC13 chamber. Nd,w,Qcross obtained in beam ≥ 9MeV gives 0.1 – 0.5% precision of dose reconstruction. Without beam quality correction, 15 MeV Nd,w,Qcross is 10% lower than Co-60 Nd,w,0. Various EPOM shifts resulted in up to 0.6% discrepancies in Nd,w,Qcross values. Conclusions: Ionization chamber with small active volume and tissue-equivalent materials supplies more accurate cross-calibration coefficients in the range of 6 – 15 MeV electron beams. In the case of 6 and 9 MeV beams, the exact position of an effective point of measurement is of minor importance. In-water cross-calibration coefficient can be used in a solid medium without loss of dose accuracy.
Rocznik
Tom
Strony
303--313
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- NU-Med Cancer Diagnosis and Treatment Centre Katowice, Poland, kinga.polaczek-grelik@nu-med.pl
autor
- NU-Med Cancer Diagnosis and Treatment Centre Katowice, Poland
autor
- NU-Med Cancer Diagnosis and Treatment Centre Katowice, Poland
Bibliografia
- 1. Andreo P, Burns DT, Hohlfeld K, Huq MS, Kanai T, Laitano F, Smyth V, Vynckier S. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water. Vienna: International Atomic Energy Agency. (IAEA TRS-398); 2006.
- 2. Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, Rogers DWO. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26(9):1847-1870. https://doi.org/10.1118/1.598691
- 3. Thwaites DI, DuSautoy AR, Jordan T, McEwen MR, Nisbet A, Nahum AE, Pitchford WG. The IPEM code of practice for electron dosimetry for radiotherapy beams of initial energy from 4 to25 MeV based on an absorbed dose to water calibration. Phys Med Biol. 2003;48(18):2929-70. https://doi.org/10.1088/0031-9155/48/18/301
- 4. Deutches Institut für Normung, Procedures of dosimetry with probe-type detectors for photon and electron radiation - Part 2: ionization chamber dosimetry of high energy photon and electron radiation; 2019. DIN 6800-2:2019-07
- 5. Gerbi BJ, Antolak JA, Deibel FC, Followill DS, Herman MG, Higgins PD, Huq MS, Mihailidis DN, Yorke ED. Recommendations for clinical electron beam dosimetry: supplement to the recommendations of task group 25. Med Phys. 2009;36(7):3239-79. https://doi.org/10.1118/1.3125820
- 6. Muir BR, McEwen MR. Technical note: On the use of cylindrical ionization chambers for electron beam reference dosimetry. Med Phys. 2017;44(12):6641-46. https://doi.org/10.1002/mp.12582
- 7. Huq MS. Practical implementation of TG-51. 2003; Retrieved from https://www.aapm.org/meetings/02AM/pdf/8315-36141.pdf
- 8. Bulski W, Ulkowski P, Gwiazdowska B. Analysis of calibration coefficients of plane-parallel Markus type ionization chambers calibrated in Co-60 and electron beams. Pol J Med Phys Eng. 2007;13(3):163-174. https://doi.org/10.2478/v10013-007-0015-4
- 9. Christ G, Dohm OS, Bruggmoser G, Schuele E. The use of plane-parallel chambers in electron dosimetry without any cross-calibration. Phys Med Biol. 2002;47(9):N121-N126. https://doi.org/10.1088/0031-9155/47/9/402
- 10. Wegener S, Sauer OA. The effective point of measurement for depth-dose measurements in small MV photon beams with different detectors. Med Phys. 2019;46(11):5209-5215. https://doi.org/10.1002/mp.13788
- 11. Looe HK, Harder D, Poppe B. Experimental determination of the effective point of measurement for various detectors used in photon and electron beam dosimetry. Phys Med Biol. 2011;56(14):4267-4290. https://doi.org/10.1088/0031-9155/56/14/005
- 12. Zink K, Wulff J. Positioning of a plane-parallel ionization chamber in clinical electron beams and the impact on perturbation factors. Phys Med Biol. 2009;54(8):2421-2435. https://doi.org/10.1088/0031-9155/54/8/011
- 13. Wang LL, Rogers DWO. Study of the effective point of measurement for ion chambers in electron beams by Monte Carlo simulation. Med Phys. 2009;36(6):2034-2042. https://doi.org/10.1118/1.3121490
- 14. Anusionwu PC, Alpuche Aviles JE, Pistorius S. The use of 0.5rcav as an effective point of measurement for cylindrical chambers may result in a systematic shift of electron percentage depth doses. J Appl Clin Med Phys. 2020;21(1):117-126. https://doi.org/10.1002/acm2.12797
- 15. Das IJ, McNeeley SW, Cheng ChW. Ionization chamber shift correction and surface dose measurements in electron beams. Phys Med Biol. 1998;43(11):3419-24. https://doi.org/10.1088/0031-9155/43/11/016
- 16. Andreo P, Almond PR, Mattsson O, Nahum AE, Roos M. The use of plane-parallel ionization chambers in high-energy electron and photon beams. An international code of practice for dosimetry. Vienna: International Atomic Energy Agency. (IAEA TRS-381); 1995.
- 17. Roos M, Derikum K, Krauss A. Deviation of the effective point of measurement of the Markus chamber from the front surface of its air cavity in electron beams. Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1173); 2000.
- 18. Almond PR, Attix FH, Humphries LJ, Kubo H, Nath R, Goetsch S, Rogers DWO. The calibration and use of plane-parallel ionization chambers for dosimetry of electron beams: an extension of the 1983 AAPM protocol report of AAPM Radiation therapy Committee Task Group No. 39. Med Phys. 1994;21(8):1251-1260. https://doi.org/10.1118/1.597359
- 19. McEwen M, DeWerd L, Ibbott G, Followill D, Rogers DWO, Seltzer S, Seuntjens J. Addendum to the AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon beams. Med Phys. 2014;41(4):041501. https://doi.org/10.1118/1.4866223
- 20. Muir BR, Rogers DWO. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types. Med Phys. 2014;41(11):111701. https://doi.org/10.1118/1.4893915
- 21. IAEA-TECDOC-1455 Implementation of the International Code of Practice on Dosimetry in Radiotherapy (TRS 398): Review of testing results. Vienna: International Atomic Energy Agency; 2005.
- 22. Absolute dose measurements in external beam radiotherapy. Application of codes of practice based on standards of absorbed dose to water. IBA Dosimetry GmbH, Schwarzenbruck; 2012.Doc-Id: P-Codes of Practice Absolute Dosimetry-510-001 01.
- 23. Zakaria A, Schuette W, Younan C. Reference Dosimetry according to the New German Protocol DIN 6800-2 and Comparison with IAEA TRS 398 and AAPM TG 51. Biomed Imaging Interv J. 2011;7(2):e15. https://doi.org/10.2349/biij.7.2.e15
- 24. SSRPM, Reference dosimetry of high-energy therapy electron beams with ionization chambers. Recommendations No. 10, Revision 2019. ISBN 3 908 125 61 8.
- 25. Muir BR. A modified formalism for electron beam reference dosimetry to improve the accuracy of linac output calibration. Med Phys. 2020;47(5):2267-2276. https://doi.org/10.1002/mp.14048
- 26. Morawska-Kaczyńska M. Anality control of plane-parallel ionization chambers. Recommendations of the Second Standard Dosimetry Laboratory for radiotherapy departments in Poland (in Polish). Nowotwory Journal of Oncology. 2000;50(3):294-302.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2cff3873-6a6d-45a3-b043-d3270162c3d1