Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 26, no. 1 | art. no. 175505
Tytuł artykułu

Failure and reliability analysis of heavy firefighting and rescue vehicles: a case study

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the article was to analyse the reliability, maintainability, and availability estimates of firefighting and rescue engines. Analysing the reliability parameters of heavy firefighting and rescue vehicles over time requires knowledge of their failures. In this article, failure data from the six years of maintenance of ten heavy firefighting and rescue vehicles from ten were analysed in relation to two main subsystems. Reliability analysis was performed and the best-fit distribution was found, with the parameters calculated. For both subsystems, the chassis combined with the cabin and the superstructure, the 2P-Weibull distributionwas identified as the most suitable fit. The availability and maintenance indicators for each vehicle and the individual subsystems were calculated. It was clearly defined that there exists a significant difference between the two subsystems analysed in terms of failure characteristics, as well as maintainability and availability parameters.
Wydawca

Rocznik
Strony
art. no. 175505
Opis fizyczny
Bibliogr. 52 poz., fot., tab., wykr.
Twórcy
  • Faculty of Transport and Civil Engineering, Poznan University of Technology, Piotrowo Str. 3, 60-965 Poznan, Poland, jaroslaw.selech@put.poznan.pl
  • Institute of Mechanical Science, Vilnius Gediminas Technical University, J. Basanavičiaus Str. 28, LT-03224 Vilnius, Lithuania
Bibliografia
  • 1. Al Sobhi MM. The extended Weibull distribution with its properties, estimation and modeling skewed data. J King Saud Univ Sci. 2022;34:101801. https://doi.org/10.1016/j.jksus.2021.101801.
  • 2. Andrzejczak K, Młyńczak M, Selech J. Poisson-distributed failures in the predicting of the cost of corrective maintenance. Eksploatacja i Niezawodnosc -Maintenance and Reliability. 2018;20(4):602-609. https://doi.org/10.17531/ein.2018.4.11.
  • 3. Banjevic D, Jardine AKS. Calculation of reliability function and remaining useful life for a Markov failure time process. IMAJ Manag Math. 2006;17:115–130.https://doi.org/10.1093/imaman/dpi029
  • 4. Banks J, Reichard K, Drake M. System reliability and condition-based maintenance. Annual Reliability and Maintainability Symposium. 2008:423-427. DOI: 10.1109/RAMS.2008.4925833.
  • 5. Banks JC, Reichard KM, Hines JA, Brought MS. Platform degrader analysis for the design and development of Vehicle Health Management Systems. 2008 International Conference on Prognostics and Health Management. 2008:1-12. DOI: 10.1109/PHM.2008.4711468.
  • 6. Bartkowiak, A. New SFS next year. Available from: https://remiza.com.pl/komendant-glowny-nowe-swd-w-przyszlym-roku/?amp=1 [Accessed 14th September 2023].
  • 7. Bodziony P, Patyk M, Kasztelewicz Z. Analysis of operating states of haul trucks used in surface mining. J KONES. 2018;25(2).
  • 8. Borucka A, Kozłowski E, Oleszczuk P, Świderski A. Predictive analysis of the impact of the time of day on road accidents in Poland. Open Eng. 2021;11(1):142-150. https://doi.org/10.1515/eng-2021-0017.
  • 9. Borucka A, Niewczas A, Hasilova K. Forecasting the readiness of special vehicles using the semi-Markov model. Eksploatacja i Niezawodnosc –Maintenance and Reliability. 2019;21(4):662–669. http://dx.doi.org/10.17531/ein.2019.4.16.
  • 10. Chen J. Fire equipment construction led by scientific outlook on development. Fire Sci Technol. 2008;27(4):235-238.
  • 11. Domagała I, Przystupa K, Firlej M, Pieniak D, Gil L, Borucka A, Naworol I, Biedziak B, Levkiv M. Analysis of the Statistical Comparability of the Hardness and Wear of Polymeric Materials for Orthodontic Applications. Materials. 2021;14:2925. https://doi.org/10.3390/ma14112925.
  • 12. Dubový D, Famfulík J, Richtář M. Determination of operational reliability of firefighting special vehicles. Transp Res Procedia. 2021;55:126-132. DOI: 10.1016/j.trpro.2021.06.014.
  • 13. Fraser RJ. Report on Maintenance Practices Assessment for the Boston Fire Department. Mercury Associates INC, Boston MA (USA), 2009.
  • 14. Gontarz A, Czerwienko D, Pogorzelski I, Jurecki L. Bezpieczeństwo samochodów pożarniczych w czasie jazdy i na miejscu akcji. Monografie CNBOP-PIB, Józefów 2012.
  • 15. Graboń-Chałupczak M. Reliability as an element of process in managing a fleet of railway vehicles. J KONBiN. 2019;49(4). https://doi.org/10.2478/jok-2019-0086
  • 16. Guoxi J, Shubo L, Sen X, Tian M, Zhenguo L, Shuai S, Haitao Z. Research on fatigue reliability assessment of engine cylinder head based on neural network. Int J Fatigue. 2023;175:107800.
  • 17. Huang HZ, Ping-Liang C, Weiwen P, Hui-Ying G, Hai-Kun W. Fatigue lifetime assessment of aircraft engine disc via multi-source information fusion. Int J Turbo Jet-Engines. 2014;31:167. DOI: 10.1515/tjj-2013-0043.
  • 18. Isaic-Maniu A. Reliability and its quantitative measures. Informatica Economica. 2010;14(4):7-18.
  • 19. Jeng, SL, Meeker WQ. Comparisons of approximate confidence procedures for type I censored data. J Amer Statist Assoc. 2000;42:135-148. https://doi.org/10.1080/00401706.2000.10485992
  • 20. Jiang P, Lim JH, Zuo MJ, Guo B. Reliability estimation in a Weibull lifetime distribution with zero-failure field data. Qual Reliab Eng Int. 2010;26(7):691–701. https://doi.org/10.1002/qre.1138
  • 21. Kececioglu D. Maintainability, Availability, & Operational Readiness Engineering, Volume 1. Prentice Hall PTR, New Jersey, 1995.
  • 22. Konowrocki R, Chojnacki A. Analysis of rail vehicles operational reliability in the aspect of safety against derailment basedon various methods of determining the assessment criterion. Eksploatacja i Niezawodność –Maintenance and Reliability. 2020;22(1):73-85. DOI:10.17531/ein.2020.1.9.
  • 23. Lloyd DK, Lipow M. Reliability: Management, Methods and Mathematics. Prentice Hall, Englewood Cliffs, New Jersey, 1962.
  • 24. Michnej M, Młynarski S, Pilch R, Sikora W, Smolnik M, Drożyner P. Physical and reliability aspects of high-pressure ammonia water pipeline failures. Eksploatacja i Niezawodnosc –Maintenance and Reliability. 2022;24(4):728–737. DOI:10.17531/ein.2022.4.13.
  • 25. Młynarski S, Pilch R, Smolnik M, Szybka J, Wiązania G. A model of an adaptive strategy of preventive maintenance of complex technical objects. Eksploatacja i Niezawodnosc –Maintenance and Reliability. 2020;22(1):35–41. DOI:10.17531/ein.2020.1.5.
  • 26. Nelson, W. Applied Life Data Analysis. John Wiley & Sons, Inc., New York, 1982.https://doi.org/10.1002/0471725234
  • 27. NFPA 1911. Standard of the inspection, maintenance, testing, and retirement of in-service emergency vehicles. NFPA, 2017.
  • 28. Niewczas A, Rymarz J, Debicka E. Stages of operating vehicles with respect to operational efficiency using city buses as an example. Eksploatacja i Niezawodnosc –Maintenance and Reliability. 2019;21(1):21–27. DOI:10.17531/ein.2019.1.3.
  • 29. Oszczypała M, Ziółkowski J, Małachowski J. Semi-Markov approach for reliability modelling of light utility vehicles. Eksploatacja i Niezawodność –Maintenance and Reliability. 2023;25(2):1-25. DOI:10.17531/ein/161859.
  • 30. Pieniak D, Walczak A, Gawroński W, Blukacz M. Analiza porównawcza niesprawności podwozi średnich samochodów ratowniczo-gaśniczych. Logistyka. 2015;4.
  • 31. Pihowicz W. Inżynieria bezpieczeństwa technicznego, Problematyka podstawowa. WNT, Warszawa, 2008.
  • 32. PN-EN 1846-2+A1:2013-07. Samochody pożarnicze, Część 2: Wymagania ogólne - Bezpieczeństwo i parametry użytkowe.
  • 33. PN-EN 50126-1:2017. Railway Applications. The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS) Generic RAMS Process.
  • 34. Poradnik T. 2, Inżynieria niezawodności/pod red. Janusza Migdalskiego. Akademia Techniczno-Rolnicza, Bydgoszcz, 1992.
  • 35. ReliaSoft Corporation. Life Data Analysis Reference Book. ReliaSoft Publishing, Tucson, AZ, 2005.
  • 36. Roguski J, red. Innowacyjne technologie w straży pożarnej. Wydawnictwo CNBOP-PIB, Józefów, 2018.https://doi.org/10.17381/2018.3
  • 37. Roguski J, red. Problemy monitoringu eksploatacji sprzętu i wyposażenia w straży pożarnej. Wydawnictwo CNBOP-PIB, Józefów, 2015.https://doi.org/10.17381/2015.2
  • 38. Scholz FW. Maximum likelihood estimation for type I censored Weibull data including covariates. ISSTECH-96-022, 1996.
  • 39. Selech J, Andrzejczak K. An aggregate criterion for selecting a distribution for times to failure of components of rail vehicles. Eksploatacja i Niezawodność–Maintenance and Reliability. 2020;22(1):102-111. DOI:10.17531/ein.2020.1.12.
  • 40. Shafer T. Using Preventative Maintenance to Reduce Costs for the Miami Valley Fire District. Miami Valley Fire District, Miamisburg, Ohio (USA), 2014.
  • 41. Sicheng Z, Weijun L, Dingli L, Ying L. The impact of dynamic traffic conditions on the sustainability of urban fire service. Sustainable Cities and Society. 2023;96.https://doi.org/10.1016/j.scs.2023.104667
  • 42. Singh VV, Ayagi HI. Study of reliability measures of system consisting of two subsystems in series configuration using copula. Palestine Journal of Mathematics. 2017;6(Special Issue: II):102–111.
  • 43. Szkutnik-Rogoż, J, Ziółkowski J, Małachowski J, Oszczypała M. Mathematical Programming and Solution Approaches for Transportation Optimisation in Supply Network. Energies. 2021;14:7010. DOI:10.3390/en14217010.
  • 44. Szopa T, Pancewicz T, Matyjewski M. Probabilistyka dla inżynierów w przykładach i zadaniach. Wyd. OWPW, Warszawa, 2021.
  • 45. Szopa T. Niezawodność i bezpieczeństwo. Wyd. OWPW, Warszawa, 2016.
  • 46. Ulbrich D, Selech J, Kowalczyk J, Jóźwiak J, Durczak K, Gil L, Pieniak D, Paczkowska M, Przystupa K. Reliability Analysis for Unrepairable Automotive Components. Materials. 2021;14:7014. DOI:10.3390/ma14227014.
  • 47. Usanov D, van de Ven PM, van der Mei RD. Dispatching fire trucks under stochastic driving times. Comput Oper Res. 2020;114:104829.https://doi.org/10.1016/j.cor.2019.104829
  • 48. Wang S, Liu Y, Di Cairano-Gilfedder C, Titmus S, Naim MM, Syntetos AA. Reliability Analysis for Automobile Engines: Conditional Inference Trees. Procedia CIRP. 2018;72:1392–1397. DOI:10.1016/j.procir.2018.03.065.
  • 49. Yang J, Liang J. Research on relationship between fire engines and fire risk. Procedia Engineering. 2012;45:674–677. DOI:10.1016/j.proeng.2012.08.221.
  • 50. Zhou H, Farsi M, Harrison A, Parlikad AK, Brintrup A. Civil aircraft engine operation life resilient monitoring via usage trajectory mapping on the reliability contour. Reliab Eng Syst Saf. 2023;230:108878.
  • 51. Zhou H, Lopes Genez TA, Brintrup A, Kumar Parlikad A. A hybrid-learning decomposition algorithm for competing risk identification within fleets of complex engineering systems. Reliability Engineering and System Safety. 2022;217:107992. DOI:10.1016/j.ress.2021.107992.
  • 52. Ziółkowski, J, Lęgas A, Szymczyk E, Małachowski J, Oszczypała M, Szkutnik-Rogoż J. Optimization of the Delivery Time within the Distribution Network, Taking into Account Fuel Consumption and the Level of Carbon Dioxide Emissions into the Atmosphere. Energies. 2022;15:5198. DOI:10.3390/en15145198.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2cd9a7db-26bc-4ec9-8458-98e995336061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.