Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 19, no. 2 | 127--133
Tytuł artykułu

Filtration Property of Monofilament Core–Shell Mesh Fabric Treated Via Tourmaline Hot Coating

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, woven fabrics with numerous electrostatic charges and desirable charge stability were investigated. A kind of core–shell monofilaments with different melting points between outer and inner layers were applied to wove the fabrics. These fabrics were hot coated through tourmaline particles as an charge enhancer at 122°C. Benefiting from the anions released by tourmaline particles and optimized content of the particles, the fabrics were endowed with surface potentials from −10 to −160 V and the voids content decreased from 45.4% to 41.2%, which contribute to the improvement in the filtration performance of the fabrics. A filtration mechanism was proposed while incremental surface charges with increasing tourmaline particles content have been confirmed through the noncontact measurement of electrostatic charges. The resultant fabrics exhibited a high filtration efficiency of 64.8% and superior long-term service performance. This study can provide a new application of the screen window for PM 2.5 governance.
Wydawca

Rocznik
Strony
127--133
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Engineering Research Center for Knitting Technology, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China
autor
  • Engineering Research Center for Knitting Technology, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China, mapibo@jiangnan.edu.cn
  • Jiangsu Jujie Microfibers Textile Group, Suzhou 215222, China
  • Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State key Laboratory, Qingdao University, Qingdao 266071, China
  • Engineering Research Center for Knitting Technology, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China
Bibliografia
  • [1] Hylander, L.D., et al., Phosphorus retention in filter materials for wastewater treatment and its subsequent suitability for plant production. Bioresource Technology, 2006. 97(7): p. 914-921.
  • [2] Presser, C., J.M. Conny, and A. Nazarian, Filter Material Effects on Particle Absorption Optical Properties. Aerosol Science and Technology, 2014. 48(5): p. 515-529.
  • [3] Anandjiwala, R.D. and L. Boguslavsky, Development of Needle-punched Nonwoven Fabrics from Flax Fibers for Air Filtration Applications. Textile Research Journal, 2008. 78(7): p. 614-624.
  • [4] Kosmider, K. and J. Scott, Polymeric nanofibres exhibit an enhanced air filtration performance. Filtration & Separation, 2002. 39(6): p. 20-22.
  • [5] Aleksandrov, V.P., R.B. Baranova, and A.Y. Valdberg, Filter materials for bag filters with pulsed regeneration. Chemical and Petroleum Engineering, 2010. 46(1): p. 33-39.
  • [6] Barry, J.A., Laboratory Batch Test Evaluation of Five Filter Materials for Removal of Nutrients and Pesticides from Drainage Waters. 2010. 53(1).
  • [7] Barhate, R.S. and S. Ramakrishna, Nanofibrous filtering media: Filtration problems and solutions from tiny materials. Journal of Membrane Science, 2007. 296(1): p. 1-8.
  • [8] Homaeigohar, S.S., K. Buhr, and K. Ebert, Polyethersulfone electrospun nanofibrous composite membrane for liquid filtration. Journal of Membrane Science, 2010. 365(1): p. 68-77.
  • [9] Zienert, T., et al., Interface reactions between liquid iron and alumina–carbon refractory filter materials. Ceramics International, 2015. 41(2, Part A): p. 2089-2098.
  • [10] Zhao, Q., et al., Ambient-curable superhydrophobic fabric coating prepared by water-based non-fluorinated formulation. Materials & Design, 2016. 92: p. 541-545.
  • [11] Sadu, R.B., et al., Silver-Doped TiO2/Polyurethane Nanocomposites for Antibacterial Textile Coating. BioNanoScience, 2014. 4(2): p. 136-148.
  • [12] Li, M., et al., Superhydrophilic surface modification of fabric via coating with nano-TiO2 by UV and alkaline treatment. Applied Surface Science, 2014. 297: p. 147-152.
  • [13] Yu, L., et al., Catalytic oxidative degradation of bisphenol A using an ultrasonic-assisted tourmaline-based system: Influence factors and mechanism study. Chemical Engineering Journal, 2014. 252: p. 346-354.
  • [14] Li, Y., et al., Preparation of tourmaline-containing functional copolymer p(TUC/BA/MMA) and its performances. Soft Materials, 2016. 14(2): p. 57-63.
  • [15] Li, G., et al., Efficient adsorption behavior of phosphate on La-modified tourmaline. Journal of Environmental Chemical Engineering, 2015. 3(1): p. 515-522.
  • [16] Hu, Z. and C. Sun, An Study on Preparation and Utilization of Tourmaline from Tailings of an Iron-ore Processing Plant. Procedia Environmental Sciences, 2016. 31(Supplement C): p. 153-161.
  • [17] Wang, Y., et al., Surface modification of superfine tourmaline powder with titanate coupling agent. Colloid and Polymer Science, 2006. 284(12): p. 1465-1470.
  • [18] Tijing, L.D., et al., Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles. Chemical Engineering Journal, 2012. 197: p. 41-48.
  • [19] Shen, X., et al., Study on Natural Minerals Applying in Developing New Health Textiles. Journal of Minerals and Materials Characterization and Engineering, 2015. Vol. 03 No.04: p. 7.
  • [20] Safak, S. and E. Karaca, Production and characterization of poly(ethylene terephthalate) nanofibrous mat including tourmaline additive. Textile Research Journal, 2015. 86(15): p. 1651-1658.
  • [21] Safak, S. and E. Karaca, Production and characterization of poly(ethylene terephthalate) nanofibrous mat including tourmaline additive. Textile Research Journal, 2016. 35(6): p. 258-262.
  • [22] Li, Q., et al., Preparation and Characterization of Fiber-Tourmaline/PVA Nanofiber Prepared by Electrospinning. Integrated Ferroelectrics, 2013. 144(1): p. 56-65.
  • [23] Sheikholeslami, M. and D.D. Ganji, Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Computer Methods in Applied Mechanics and Engineering, 2015. 283(Supplement C): p. 651-663.
  • [24] Malvandi, A., S. Heysiattalab, and D.D. Ganji, Thermophoresis and Brownian motion effects on heat transfer enhancement at film boiling of nanofluids over a vertical cylinder. Journal of Molecular Liquids, 2016. 216(Supplement C): p. 503-509.
  • [25] LeBel, F., et al., Prediction of optimal flow front velocity to minimize void formation in dual scale fibrous reinforcements. International Journal of Material Forming, 2014. 7(1): p. 93-116.
  • [26] Fiore, V., G. Di Bella, and A. Valenza, The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Composites Part B: Engineering, 2015. 68: p. 14-21.
  • [27] Abdul Hassan, N., G.D. Airey, and M.R. Hainin, Characterisation of micro-structural damage in asphalt mixtures using image analysis. Construction and Building Materials, 2014. 54: p. 27-38.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2cb45ee7-6407-4454-9def-4b95b4ac2960
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.