Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2018 | Vol. 45, no. 1 | 44--55
Tytuł artykułu

Luminescence chronostratigraphy for the loess deposits in Złota, Poland

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Conference Proceedings of the 12th International Conference “Methods of Absolute Chronology” May 11-13th, 2016, Gliwice-Paniówki, Poland
Języki publikacji
EN
Abstrakty
EN
Loess formations in Poland display a close relationship with cooling and warming trends of the Northern Hemisphere during the Pleistocene. Loess sequences sensitively record regional palaeoclimatic and palaeoecological changes. The Złota loess profile (21°39’E, 50°39’N) provides a unique opportunity to reconstruct climate conditions in the past in this part of Poland. This continuous sequence of loess and palaeosol deposits allows to distinguish between warmer and more humid climate which is favourable for soil development and much colder and dry periods which are conducive to loess accumulation. The silty and sandy aeolian material originates mainly from weathered rock surfaces affected by frost shattering or from glaciofluvial/fluvial deposits of river flood plains. In Poland, loess and loess-like formations occur in the southern part of the country, mostly in the south polish uplands, i.e. in the Lublin, Sandomierz, and Cracow Uplands. We used different techniques to establish a chronological framework for this site. 21 samples for luminescence dating were collected from the investigated loess profile in Złota. Infrared post-IR IRSL dating method was applied to the polymineral fine grains (4–11µm). The dating results are accompanied by detailed analyses of the geochemical composition, organic carbon and carbonate. Also, analysis of magnetic susceptibility and grain-size distribution were investigated. Based on such a large stratigraphic dataset an age-depth model using OxCal has also been constructed for this site.
Wydawca

Czasopismo
Rocznik
Strony
44--55
Opis fizyczny
Bibliogr. 56 poz., rys.
Twórcy
autor
  • Silesian University of Technology, Institute of Physics – Center for Science and Education, Konarskiego 22B, 44-100 Gliwice, Poland , Piotr.Moska@polsl.pl
autor
  • Silesian University of Technology, Institute of Physics – Center for Science and Education, Konarskiego 22B, 44-100 Gliwice, Poland
autor
  • Institute of Geography and Regional Development, University of Wroclaw, 50-137 Wroclaw, Poland
autor
  • Silesian University of Technology, Institute of Physics – Center for Science and Education, Konarskiego 22B, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Physics – Center for Science and Education, Konarskiego 22B, 44-100 Gliwice, Poland
  • Silesian University of Technology, Institute of Physics – Center for Science and Education, Konarskiego 22B, 44-100 Gliwice, Poland
autor
  • Institute of Geography and Regional Development, University of Wroclaw, 50-137 Wroclaw, Poland
  • Institute of Geography and Regional Development, University of Wroclaw, 50-137 Wroclaw, Poland
Bibliografia
  • 1. Antoine P, Rousseau DD, Lautridou JP and Hatte C, 1999. Last Interglacial-Glacial climatic cycle in loess-palaeosol successions of NW France. Boreas28: 551–563.
  • 2. Antoine P, Rousseau DD, Zöller L, Lang A, Munaut AV, Hatte C and Fontugne M, 2001. High resolution record of the last interglacial– glacial cycle in the Nussloch loess palaeosol sequences, Upper Rhine Area Germany. Quaternary International76–77: 211–229, .
  • 3. Antoine P, Rousseau DD, Moine O, Kunesch S, Hatte C, Lang A, Tissoux H and Zöller L, 2009. Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany. Quaternary Science Reviews28: 2955–2973, .
  • 4. Antoine P, Rousseau DD, Degeai JP, Moine O, Lagroix F, Kreutzer S, Fuchs M, Hatte Ch, Gauthier C, Svoboda J and Lisa L, 2013. High-resolution record of the environmental response to climatic variations during the Last Interglacial-Glacial cycle in Central Europe: the loess-palaeosol sequence of Dolni Vestonice (Czech Republic) Quaternary Science Reviews67:17–38, .
  • 5. Bronk Ramsey C, 2009. Bayesian analysis of radiocarbon dates. Radiocarbon51: 337–360.
  • 6. Bronk Ramsey C and Lee S, 2013. Recent and Planned Developments of the Program OxCal. Radiocarbon55(2–3): 720–730.
  • 7. Cegła J, 1972. Loess sedimentation in Poland. Acta Universitates Wartisłaviensis168 (in Polish)
  • 8. Dolecki L and Łanczont M, 1998. Loesses and paleosols of the older part of the Wisla (Würm) glaciation in Poland. Geologija25: 31–38.
  • 9. Dolecki L and Łanczont M, 2001. Profil lessów młodszych w Polanówie Samborzeckim kolo Sandomierza (Loess section at Polanów Samborzecki near Sandomierz). In: Maruszczak, H., (Ed.), Podstawowe profile lessów w Polsce II. Wyd. UMCS, Lublin, 104–109.
  • 10. Dolecki L, 2002. Podstawowe profile lessów neoplejstoceńnskich Grzędy Horodelskiej i ich interpretacja litologiczno-stratygraficzna(Main profiles of the Neopleistocene loesses on the Horodło Plateau-Ridge and their lithological-stratigraphical interpretation). Wydawnictwo UMCS, Lublin (in Polis)
  • 11. Fedorowicz S, 2006. Methodological aspects of luminescence dating of Central Europe’s neopleistocene deposits. Academic Press, Gdańsk (in Polish)
  • 12. Fedorowicz S, Łanczont M, Bogucki A, Kusiak J, Mroczek P, Adamiec G, Bluszcz A, Moska P and Tracz M, 2013. Loess-paleosol sequence at Korshiv (Ukraine): chronology based on complementary and parallel dating (TL, OSL), and litho-pedosedimentary analyses. Quaternary International296: 117–130, .
  • 13. Frechen M, Oches EA and Kohfeld KE, 2003. Loess in Europe – mass accumulation rates during the Last Glacial Period.Quaternary Science Reviews22: 1467–1493,.
  • 14. Fuchs M, Rousseau DD, Antoine P, Hatté C, Gauthier C, Marković S and Zoeller L, 2008. Chronology of the Last Climatic Cycle (Upper Pleistocene) of the Surduk loess sequence, Vojvodina, Serbia. Boreas37: 66–73, .
  • 15. Fuchs M, Kreutzer S, Rousseau DD, Antoine P, Hatté C, Lagroix F, Moine O, Gauthier C, Svoboda J and Lisaá L, 2013. The loess sequence of Dolní Vestonice, Czech Republic: A new OSL-based chronology of the Last Climatic Cycle. Boreas42: 664–677, .
  • 16. Grygierczyk S and Waga JM, 1993. Plejstoceńskie osady w Samborcu koło Sandomierza (The Pleistocene sediments at Samborzec near Sandomierz). Geographia. Studia et Dissertationes18: 49–62.
  • 17. Guerin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors: update. Ancient TL29: 5–8.
  • 18. Jary Z, 2007. Record of Climate Changes in Upper Pleistocene loess-soil sequences in Poland and western part of Ukraine. Academic Press, Wrocław (in Polish)
  • 19. Jary Z, 2009. Periglacial markers within the Late Pleistocene loess-palaeosol sequences in Poland and western Ukraine.Quaternary International198: 124–135, .
  • 20. Jary Z and Ciszek D, 2013. Late Pleistocene loess-palaeosol sequences in Poland and western Ukraine. Quaternary International296: 37–50, .
  • 21. Jersak J, 1973. Lithology and stratigraphy of the loess on the Southern Polish Uplands. Acta Geographica Lodziensia32. Lodz (in Polish)
  • 22. Komar M, Łanczont M and Madeyska T, 2009. Spatial vegetation patterns based on palynological records in the loess area between the Dnieper and Odra Rivers during the last interglacial–glacial cycle. Quaternary International198: 152–172, .
  • 23. Konecka-Betley K, Czępińska-Kamińska D, Okołowicz M, Zagórski Z, 2006. Pedogenetic processes in palaeosols of the Polanów Samborzecki loesses exposure — vicinity of Sandomierz. Roczniki Gleboznawcze57 (3–4), 151–173 (in Polish with English summary).
  • 24. Kreutzer S, Fuchs M, Meszner S and Faust D, 2012. OSL chronostratigraphy of a loess-palaeosol sequence in Saxony/Germany using quartz of different grain sizes. Quaternary Geochronology10: 102–109, .
  • 25. Kukla GJ and An ZS, 1989. Loess stratigraphy in central China. Palaeogeography, Palaeoclimatology, Palaeoecology72: 203–225, .
  • 26. Kukla G, McManus JF, Rousseau D and Chuine I, 1997. How long and how stable was the last interglacial? Quaternary Science Reviews16: 605–612, .
  • 27. Kusiak J and Łanczont M, 2000. New results of TL dating of the loess profile at Polanów Samborzecki with use of the optical filters BG-28 and UG-11. Geochronometria19: 1–6.
  • 28. Kusiak J, 2007. TL ages of loesses from the last two glacials in SE Poland. Geochronometria27: 33–40, .
  • 29. Kusiak J, 2008. Stratigraphic context of the application of different variants of thermoluminescence method to dating of loesses from the southeastern Poland and northwestern Ukraine. Annales63 45–74 (in Polish)
  • 30. Liu QS, Banerjee SK, Jackson MJ, Chen F, Pan Y and Zhu R, 2004. Determining the climatic boundary between the Chinese loess and palaeosol: evidence from aeolian coarse-grained magnetite. Geophysical Journal International156: 267–274, .
  • 31. Marković SB, Bokhorst MP, Vandenberghe J, McCoy WD, Oches EA, Hambach U, 2008. Late Pleistocene loess-palaeosol sequences in the Vojvodina region, north Serbia. Journal of Quaternary Science23: 73–84, .
  • 32. Marković SB, Stevens T, Kukla GJ, Hambach U, Fitzsimmons KE, Gibbard P, Buggle B, Zech M, Guo Z, Hao Q, Wu H, Ken O’Hara D, Smalley J, Ujvari G, Sümegi P, Timar-Gabor A, Veres D, Sirocko F, Vasilijević A, Jary Z, Svensson A, Jovic V, Lehmkuhl F, Kovacs J and Svircev Z, 2015. Danube loess stratigraphy - Towards a pan-European loess stratigraphic model. Quaternary Science Review148: 228–258, .
  • 33. Maruszczak H, 1991. Stratigraphical differentiation of Polish loesses.In: Maruszczak, H., (Eds.), Main section of loesses in Poland. Wydawnictwo UMCS, Lublin, pp. 13–35 (in Polish)
  • 34. Maruszczak H, 2001. Schemat stratygrafii lessów i gleb śródlessowych w Polsce (Stratigraphic scheme of loesses and paleosols in Poland). In: Maruszczak, H., (Eds.), Podstawowe profile lessów w Polsce II (Main section of loesses in Poland II). Wydawnictwo UMCS, Lublin, pp. 17–29 (in Polish)
  • 35. Meszner S, Kreutzer S, Fuchs M and Faust D, 2013. Late Pleistocene landscape dynamics in Saxony, Germany: paleoenvironmental reconstruction using loess-paleosol sequences. Quaternary International296: 94–107, .
  • 36. Moska P, Adamiec G and Jary Z, 2011. OSL dating and lithological characteristics of loess deposits from Biały Kościół.Geochronometria38(2): 162–171, .
  • 37. Moska P, Adamiec G and Jary Z, 2012. High resolution dating of loess profile from Biały Kościół, south-west Poland.Quaternary Geochronology10: 87–93, .
  • 38. Moska P, Jary Z, Adamiec G and Bluszcz A, 2015. OSL chronostratigraphy of a loess-palaeosol sequence in Złota using quartz and polymineral fine grains. Radiation Measutements81: 23–31, .
  • 39. Mroczek P, 2008. Interpretacja paleogeograficzna cech mikromorfologicznych neoplejstocenskich sekwencji lessowo-glebowych (The paleogegraphical interpretation of micromorphological features of the Neopleistocene Loess-Paleosol sequences). Wydawnictwo UMCS, Lublin.
  • 40. Mroczek P, 2013. Recycled loesses a micromorphological approach to the determination of local source areas of Weichselian loess. Quaternary International296: 241–250, .
  • 41. Obreht I, Zeeden CH, Hambach U, Veres D, Marković S, Bösken J, Svirčev Z, Bačević N, Gavrilov M and Lehmkuhl F, 2016. Tracing the influence of Mediterranean climate on Southeastern Europe during the past 350,000 years. Scientific Reports6: 36334, .
  • 42. ON L 1084-99, 1999. Chemical analyses of soils—determination of carbonate. In: Austrian Standards Institute (ed) ÖNORM L 1084. Austrian Standards Institute, Vienna.
  • 43. Prescott JR and Stephan LG, 1982. The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependencies. TLS II-1, 16–25.
  • 44. Pye K, 1987. Aeolian Dust and Dust Deposits. Academic Press, London
  • 45. Pye K, 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews14: 653–667, .
  • 46. Prószyńska-Bordas H, Prószyński M, Stanska-Prószyńska W and Wicik B, 1985. Section at Złota in Sandomierz. Guide-book of the international symposium “Problems of the Stratigratghy and Paleogeography of Loesses”, Academic Press, Lublin
  • 47. Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchart SL, Clausen HB, Cvijanovic I, Dahl-Jensen D, Johnsen SJ, Fisher H, Gkins V, Guillevic M, Hoek WZ, Lowe JJ, Pedro JB, Popp T, Seierstad IK, Steffensen JP, Svensson AM, Vallelonga P, Vinther BM, Walker MJC, Wheatley JJ and Winstrup M, 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews106: 14–28, .
  • 48. Rees-Jones J, 1995. Optical dating of young sediments using fine-grain quartz. Ancient TL13: 9–14.
  • 49. Stevens T, Marković S, Zech M, Hambach U, Sümegi P, 2011. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle. Quaternary Science Reviews30: 662–681, .
  • 50. Thiel Ch, Buylaert JP, Murray AS, Terhorst B, Tsukamoto S, Frechen M and Sprafke T, 2011. Investigating the chronostratigraphy of prominent palaeosols in Lower Austria using post-IR IRSL dating. Quaternary Science Journal60(1): 137–152.
  • 51. Timar A, Vanderberghe D, Panaiotu CE, Panaiotu CG, Necula C, Cosma C, Van den Haute P, 2010. Optical dating of Romanian loess using fine-grained quartz. Quaternary Geochronology5: 143–148,.
  • 52. Tyurin IV, 1935. Comparative study of the methods for the determination of organic carbon in soils and water extracts of soils. Dokuchaive Soil Inst. Stud, Genesis Geogr. Soils, 139–158.
  • 53. Ujvari G, Molnar M, Novothny A, Pall-Gergely B, Kovacs J, Varhegyi A, 2014. AMS 14C and OSL/IRSL dating of the Dunaszekcso loess sequence (Hungary): chronology for 20 to 150 ka and implications for establishing reliable age-depth models for the last 40 ka. Quaternary Science Reviews106: 140–154, .
  • 54. Vandenberghe J and Nugteren G, 2001. Rapid climatic changes recorded in loess successions. Global and Planetary Change28: 1–9, .
  • 55. Vandenberghe J, 2013. Grain size of fine-grained windblown sediment: A powerful proxy for process identification. Earth-Science Reviews121: 18–30, .
  • 56. Vandenberghe J, Flas D, De Dapper M, Van Nieuland J, Kolobova K, Pavlenok K, Islamov U, De Pelsmaeker E, Debeer AE and Buylaert JP, 2013. Revisiting the Palaeolithic site of Kulbulak (Uzbekistan): First results from luminescence dating. Quaternary International324: 180–189, .
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2c9989b1-164e-4d65-949c-8931d256f987
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.