Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, iss. 4 | 35--43
Tytuł artykułu

A Review on the Adsorption of Phenol Derivatives from Wastewater

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several environmental companies consider phenols compounds to be very dangerous pollutants because they are highly toxic and non-biodegradable, notably their high toxicity in water. For this reason, several processes have been studied by researchers to understand the mechanisms of elimination of phenolic compounds. Adsorption remains the best technique due to its characteristics, in fact, it is non-destructive and simple to use as well as have more other advantages, such as practicality and efficiency and low cost, Therefore, these methods need to be widely developed on an industrial scale to remove phenol derivatives and achieve wastewater quality in accordance with standards. On the other hand, the development of these adsorption methods is highly dependent on new research on materials from abundant natural resources, namely apatites or biomaterials.
Słowa kluczowe
EN
Wydawca

Rocznik
Strony
35--43
Opis fizyczny
Bibliogr. 71 poz., tab.
Twórcy
  • Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco, r.benaddi@hotmail.fr
  • Laboratory of Chemical Processes and Applied Materials (LPCMA), Polydisciplinary Faculty of Béni-Mellal University Sultan Moulay Slimane, BP 592, 23000 Béni-Mellal, Marocco
  • Laboratory of Organic Chemistry and Physical Chemistry (Molecular Modeling and Environment), Faculty of Sciences, University Ibn Zohr, B.P. 8106 Cité Dakhla, Agadir, Morocco
  • Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
  • Laboratory of Chemical Processes and Applied Materials (LPCMA), Polydisciplinary Faculty of Béni-Mellal University Sultan Moulay Slimane, BP 592, 23000 Béni-Mellal, Marocco
  • Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
Bibliografia
  • 1. Abid, M.F. Abdulla, O.N. Kadhim and A.F. 2019. Study on removal of phenol from synthetic wastewater using solar photo catalytic reactor, J. King Saud Univ. Eng. Sci., 31, 131–139. https://doi.org/10.1016/j.jksues.2017.03.002
  • 2. Abdel-Ghani, N.T. El-Chaghaby, G.A., Helal, F.S 2016. Preparation, characterization and phenol adsorption capacity of activated carbons from African beech wood sawdust, Global J. Environ. Sci. Manage., 2, 209–222. https://doi.org/10.7508/gjesm.2016.03.001
  • 3. Achak, M. Ouazzani, N., Mandi. 2009a. Treatment of modern olive mill effluent by infiltration-percolation on a sand filter, Rev. Des Sci. De L’Eau, 22, 421–433. http://dx.doi.org/10.7202/037780ar
  • 4. Achak, M., Hafidi, A., Ouazzani, N., Sayadi, S., Mandi, L. 2009b. Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: kinetic and equilibrium studies, J. Hazard. Mater., 166, 117–125. https://doi.org/10.1016/j.jhazmat.2008.11.036
  • 5. Aktaş, Ö., Çeçen, F. 2007. Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon, J. Hazard. Mater., 141, 769–777. https://doi.org/10.1016/j.jhazmat.2006.07.050
  • 6. Ali, I.. Asim, M., Khan, T.A. 2012. Low-cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage., 113, 170–183. https://doi.org/10.1016/j.jenvman.2012.08.028
  • 7. Al-Khalid, T., El-Naas, M.H. 2012. Aerobic Biodegradation of Phenols: A Comprehensive Review. Critical Reviews in Environmental Science and Technology, 42, 1631–1690. https://doi.org/10.1080/10643389.2011.569872
  • 8. Alzaydien, A.S., Manasreh., W. 2009. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto activated phosphate rock, International Journal of Physical Sciences, 4, 172–181. http://www.academicjournals.org/IJPS
  • 9. Arutchelvan, V., Kanakasabai, S., Nagarajan, S., Muralikrishnan, V. 2005. Isolation and identification of novel high strength phenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater. Journal of Hazardous Materials, B127, 238–243. https://doi.org/10.1016/j.jhazmat.2005.04.043
  • 10. Bahdod, A., El Asri, S., Saoiabi, A., Coradin, T., Laghzizil, A. 2009. Adsorption of phenol from an aqueous solution by selected apatite adsorbents: Kinetic process and impact of the surface Properties, water research, 4 3, 3 1 3–3 1 8. https://doi.org/10.1016/j.watres.2008.10.023
  • 11. Bailliez, S., Nzihou, A., Beche, E., Flamant, G. 2004. Removal of lead (Pb) by Hydroxyapatite sorbent. Journal of Process Safety and Environmental Protection, 82, 175–180. https://doi.org/10.1205/095758204322972816
  • 12. Barrios-Martinez, A., Barbot, Marrot, B., Moulin, P., Roche, N. 2006. Degradation of synthetic phenol-containing wastewaters by MBR. Journal of Membrane Science, 281(1-2), 288–296. https://doi.org/10.1016/j.memsci.2006.03.048
  • 13. Belaib, F., Meniai, A.H., Lehocine, M.B. Elimination of phenol by adsorption onto mineral/polyaniline composite solid support, Procedia Eng., 18(2012), 1254–1260. https://doi.org/10.1016/j.egypro.2012.05.141
  • 14. Benaddi, R., El Harfi, Kh., Aziz, F., Berrekhis, F., Ouazzani, N. 2020. Removal of phenolic compounds from synthetic solution and oil mill waste water by adsorption onto nanoparticles synthesized from phosphate rock. J. Surface Sci. Technol., 36, 39–51. https://doi.org/10.18311/jsst/2020/23780
  • 15. Benaddi, R., El harfi, Kh., Aziz, Fand Ouazzani, N. 2021. Desalin. Water.Treat., 220, 297–308. https://doi.org/10.5004/dwt.2021.26979
  • 16. Benaddi R., Aziz K., El Harfi F., Ouazzani N. 2022a. Column Adsorption Studies of Phenolic Compounds on Nanoparticles Synthesized from Moroccan Phosphate Rock. Sustainable Energy Water-Environment Nexus in Deserts, 115–120. http://dx.doi.org/10.1007/978-3-030-76081-6_13
  • 17. Benaddi R., Bouriqi, A., Aziz K., El Harfi F., Ouazzani N. 2022b. Treatment of Olive Mill Waste Water by Adsorption on Hydroxyapatite-Sodium Alginate Composite. International Journal of Environmental Science and Development, 5(13), 251–256. http://dx.doi.org/10.18178/ijesd.2022.13.6.1401.
  • 18. Benaddi, R., Ferkan, Y., Bouriqi, A., Ouazzani, N. 2022c. Impact of Landfill Leachate on Groundwater Quality – A Comparison Between Three Different Landfills in Morocco. Journal of Ecological Engineering, 23(11), 89-94. https://doi.org/10.12911/22998993/153006.
  • 19. Bensalah, H., Bekheet, M.F., Younssi, S.A., Ouammou, M., Gurlo, A. 2018. Hydrothermal synthesis of nanocrystalline hydroxyapatite from phosphogypsum waste, J. Environ. Chem. Eng., 6, 1347–1352. http://dx.doi.org/10.1016/j.jece.2018.01.052
  • 20. Bouyarmane, H., El Asri, S., Rami, A., Roux, C., Mahly, MA,Saoiabi, A., Coradin, T., Laghzizil, A. 2010. Pyridine and phenol removal using natural and synthetic apatite as low-cost sorbents: Influence of porosity and surface interactions. Journal of Hazardous Materials, 181, 736–741. https://doi.org/10.1016/j.jhazmat.2010.05.074
  • 21. Bouyarmane, H., Saoiabi, S., Laghzizil, A., Saoiabi, A., Rami, A., El Karbane, M. 2014. Natural phosphate and its derivative porous hydroxyapatite for the removal of toxic organic chemicals, Journal Desalination and Water Treatment, 52, 37–39. https://doi.org/10.1080/19443994.2013.831797
  • 22. Burakova, E.A., Dyachkova, T. P., Rukhov, A.V., Tugolukov, E.N., Galunin, E.V., Tkachev, A.G., Basheer, A., Ali, I. 2018. Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation J. Mol. Liq., 253, 340–346. https://doi.org/10.1016/j.molliq.2018.01.062
  • 23. Chedeville, O., Debacq, M., Porte, C. 2009. Removal of phenolic compounds present in olive mill wastewaters by ozonation, Desalination, 24, 865–869. https://doi.org/10.1016/j.desal.2009.04.014
  • 24. Belaid, C., Khadraoui, M., Mseddi, S., Kallel, M., Elleuch, B., Fauvarque, J.F. 2013. Electrochemical treatment of olive mill wastewater: treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools, J. Environ. Sci., 25, 220–230. https://doi.org/10.1016/S1001-0742(12)60037-0
  • 25. Cote, G. 1998. Extraction liquide-liquide. Techniques de l’Ingénieurs, J, 2760.
  • 26. Dabhade, M.A., Saidutta, M.B., Murthy, D.V.R. 2009. Adsorption of Phenol on Granular Activated Carbon from Nutrient Medium:Equilibrium and kinetic Study. International Journal of Environmental Research, 32, 557-568. https://www.researchgate.net/publication/265412398
  • 27. Datta, C., Dutta, A., Dutta, D., Chaudhuri, S. 2011. Adsorption of polyphenols from ginger rhizomes on an anion exchange resin Amberlite IR-400–Study on effect of pH and temperature. Procedia Food Sci., 1, 893–899. https://doi.org/10.1016/j.profoo.2011.09.135
  • 28. De Gisi, S., Lofrano, G., Grassi, M., Notarnicola, M. 2016. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review, SM&T, 9, 10–40. https://doi.org/10.1016/j.susmat.2016.06.002
  • 29. Elabbas, S., Mandi, L., Berrekhis, F., Pons, M.N., Leclerc, J.P., Ouazzani, N. 2016. Removal of Cr (III) from chrome tanning waste water by adsorption using two natural carbonaceous materials: eggshell and powdered marble. J. Environ. Manage., 166, 589–595. https://doi.org/10.1016/j.jenvman.2015.11.012
  • 30. El Asri, S., Laghzizil, A., Saoiabi, A., Alaoui, A., El Abassi, K.R., M’hamdi, R., Coradin, T. 2009. A novel process for the fabrication of nanoporous apatites from Moroccan phosphate rock, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 350, 73–78. https://doi.org/10.1016/j.colsurfa.2009.09.006
  • 31. El boughdiri, N., Jamoussi, B., Hannachi, A., Romdhane, M., Abderraba, A. 2007. Séparation des composés phénoliques de la margine. Déchets sciences et techniques, 47, 17–23. https://dx.doi.org/10.4267/dechets-sciences-techniques.1637
  • 32. El Gaidoumi, A., benabdallah, A.C., Lahrichi, A., Kherbeche, A. 2015. Adsorption of phenol in aqueous medium by a raw and treated Moroccan pyrophyllite. Journal of Materials and Environmental Science, 6, 2247-2259. https://www.researchgate.net/project/Synthesis-and-Characterization-of-Zeolite-HS-Using-Natural-Pyrophyllite-as-New-Clay-Source
  • 33. Freundlich, H. Journal of Chemistry and Education, 3, 1455 (1926). https://doi.org/10.1021/ed003p1454.2.
  • 34. Ghannoum Obeid, L. 2014. Synthesis and characterization of magnetic materials for the adsorption of pollutants present in water. Doctoral thesis Pierre and Marie Curie University.
  • 35. Girish, C.R., Ramachandra V. 2012. Adsorption of phenol from wastewater using locally available adsorbents. Journal of Environmental Research and Development 6, 763–772. https://www.researchgate.net/publication/332670013
  • 36. Gupta, V.K., Ali, I. 2013. Water Treatment for inorganic Pollutants by Adsorption Technology, Environmental Water, Advances in Treatment, Remediation and Recycling, 29–91. https://doi.org/10.1016/B978-0-444-59399-3.00002-7
  • 37. Heng Loh, C.H., Zhang, Y., Goh, S., Wang, R., Fane, AG. 2016. Composite hollow fiber membranes with different poly (dimethylsiloxane) intrusions into substrate for phenol removal via extractive membrane bioreactor. Journal of Membrane Science, 500, 236–244. https://doi.org/10.1016/j.memsci.2015.12.001
  • 38. Hui, Q., Lu, L., Bing-cai, P., Qing-jian, Z., Weiming, Z., Quan-xing. Z., Zhejiang. 2009. J. Univ-SC. A., 10, 716.
  • 39. Jakobek, L. 2015. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem., 175, 556–567. https://doi.org/10.1016/j.foodchem.2014.12.013
  • 40. Khazaali, F., Kargari, A., Rokhsaran, M. 2014. Application of low-pressure reverse osmosis for effective recovery of Bisphenol A from aqueous wastes. Journal of Desalination and Water Treatment, 52(40–42) ,7543–7551. https://doi.org/10.1080/19443994.2013.831795
  • 41. Khenniche, L., Benissad-Aissani, F. 2010. Adsorptive removal of phenol by coffee residue activated carbon and commercial activated carbon: equilibrium, kinetics, and thermodynamics. J. Chem. Eng. Data, 55, 4677–4686. https://doi.org/10.1021/je100302e
  • 42. Kuosa, M., Kallas, J., Häkkinen, A. 2015. Ozonation of p-nitrophenol at different pH values of water and the influence of radicals at acidic conditions. Journal of Environmental Chemical Engineering, 3(1), 325–32. https://doi.org/10.1016/j.jece.2014.10.015
  • 43. Kulkarni, S.J., Tapre, R.W., Patil, S.V., Sawarkar, M.B. 2013. Adsorption of phenol from wastewater in fluidized bed using coconut shell activated carbon. Procedia Eng., 51, 300–307. https://doi.org/10.1016/j.proeng.2013.01.040
  • 44. Langmuir. I., Amer, J. 1918. Chem. Soc., 40(13). https://doi.org/10.1021/ja02242a004
  • 45. Lika, K., Papadakis, I.A. 2009. Modeling the biodegradation of phenolic compound by microalgae. Journal of Sea Research, 62, 135–146. https://doi.org/10.1016/j.seares.2009.02.005
  • 46. Lin, K., Pan, J., Chen, Y., Cheng, R., Xu, X. 2009. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. Journal of Hazardous Materials, 161, 231–240. https://doi.org/10.1016/j.jhazmat.2008.03.076
  • 47. Loredo-Cancino, M., Soto-Regalado, E., Garcıa-Reyes, R.B., Cerino-Cordova, F.D., Garza-Gonzalez, M.T., Alcala-Rodrıguez, M.M., Davila Guzman, N.E. 2016. Adsorption and desorption of phenol onto barley husk-activated carbon in an air lift reactor. Desalin. Water Treat., 57, 845, 860. https://doi.org/10.1080/19443994.2014.970579
  • 48. Mihoc, G., Ianoş, R., Păcurariu, C. 2014. Adsorption of phenol and p-chlorophenol from aqueous solutions by magnetic nanopowder, 69(2), 385–391. https://doi.org/10.2166/wst.2013.727
  • 49. Mohammadi, S., Kargari, A., Sanaeepur, H., Abbassian, K., Najafi, A., Mofarrah, E. 2015. Phenol removal from industrial wastewaters: a short review. Journal of Desalination and Water Treatment, 53, 2215–2234. https://doi.org/10.1080/19443994.2014.883327
  • 50. Moradi, M., Heydari, M., Darvishmotevalli, M., Karimyan, K., Gupta, V.K., Vasseghianc, Y. Sharafi, H. 2018. Kinetic and modeling data on phenol removal by Iron-modified Scoria Powder (FSP) from aqueous solutions, Data Brief, 20, 957–968. https://doi.org/10.1016/j.dib.2018.08.068
  • 51. Osmane, A., Zidane, K., Benaddi, R., Sebah, I., Elmouraille, N., Ait Ali, M., Belmouden, M. 2023. Study the Effectiveness of the Natural Lagoons for Removal of Organic Matter, Nutrients and Fecal Coliform from Urban Domestic Wastewater under Arid Climate (Morocco). Journal of Ecological Engineering, 24(2), 196–207. https://doi.org/10.12911/22998993/156518
  • 52. Ouabou, E. ,Anouar, A., Hilali, S. 2014. Traitement de la margine brute d’huiled’olive par distillation suivi de neutralisation par chaux, J. Appl. Biosci., 79, 6867–6872. https://doi.org/10.4314/jab.v79i0.12
  • 53. Ozkaya, B. 2006. Adsorption and desorption of phenol on activated carbon and comparison of isotherm models. Journal of Hazardous Materials, B129, 158–163. https://doi.org/10.1016/j.jhazmat.2005.08.025
  • 54. Perrich, J.R. 1981. Activated carbon adsorption for wastewater treatment. Livre, Boca Raton-Florida, (CRC press).
  • 55. Raza, W., Lee, J., Raza, N., Luo, Y., Kim, K.-H., Yang, J. 2019. Removal of phenolic compounds from industrial waste water based on membranebased technologies, J. Ind. Eng. Chem., 71, 1–18. https://doi.org/10.1016/j.jiec.2018.11.024
  • 56. Rengaraj, S., Moon, S.H., Sivabalan, R., Arabindoo, B., Murugesan, V. 2002. Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste: rubber seed coat. J. Hazard. Mater., 89(2002), 185–196. https://doi.org/10.1016/S0304-3894(01)00308-9
  • 57. Rocher, V., Siaugue, J.M., Cabuil, V., Bee, A. 2008. Removal of organic dyes by magnetic alginate beads. Journal of Water Research, 42 (4–5), 1290–1298. https://doi.org/10.1016/j.watres.2007.09.024
  • 58. Rodriguez Arana, J.M.R., Mazzoco, R.R. 2010. Adsorption studies of methylene blue and phenol onto black stone cherries prepared by chemical activation. J. Hazard. Mater., 180, 656–661. https://doi.org/10.1016/j.jhazmat.2010.04.086
  • 59. Samimi, M., Shahriari Moghadam, M. 2020. Phenol biodegradation by bacterial strain O-CH1 isolated from seashore. Global J. Environ. Sci. Manage., 6(2020), 109–118. https://doi.org/10.22034/GJESM.2020.01.09
  • 60. Sacco, O., Vaiano, V., Daniel, Ch., Navarra, W., Venditto, V. 2018. Removal of phenol in aqueous media by N-doped TiO2 based photocatalytic aerogels, Mater. Sci. Semicond. Process., 80, 104–110. https://doi.org/10.1016/j.mssp.2018.02.032
  • 61. Saoiabi, S., Gouza, A., Bouyarmane, H., Laghzizil, A., Saoiabi. A. 2016. Organophosphonate-modified Hydroxyapatites for Zn(II) And Pb(II) Adsorption in relation of their structure and surface properties. Journal of Environmental Chemical Engineering, 4(1), 428–433. https://doi.org/10.1016/j.jece.2015.11.036
  • 62. Sellaoui, L., Kehili, M., Claudio Lima, E., Thue, P.S., Bonilla-Petriciolet, A., Ben Lamine, A., Dotto, G.L., Erto , A. 2019. Adsorption of phenol on microwave- assisted activated carbons: Modelling and interpretation. Journal of Molecular Liquids, 274, 309, 314. https://doi.org/10.1016/j.molliq.2018.10.098
  • 63. Shahriari Moghadam, M., Safaei, N., Ebrahimipour, G.H. 2016. Optimization of phenol biodegradation by efficient bacteria isolated from petrochemical effluents. Global J. Environ. Sci. Manage., 2, 249–256. https://doi.org/10.7508/gjesm.2016.03.004
  • 64. Shawabkeh, R.A., Abu-Nameh, E.S.M. 2007. Absorption of phenol and methylene blue by activated carbon from pecan shells. Colloid J., 69, 355–359. https://doi.org/10.1134/S1061933X07030143
  • 65. Víctor-Ortega, M.D., Ochando-Pulido, J.M., Martínez-Ferez, A. 2016. Phenols removal from industrial effluents through novel polymeric resins: kinetics and equilibrium studies. Journal of Separation and Purification Technology, 160, 136–144. https://doi.org/10.1016/j.seppur.2016.01.023
  • 66. Villar da Gama, B.M., Elisandra do Nascimento, G.L., Silva Sales, D.C., Rodríguez-Díaz, J.M., Bezerra de Menezes Barbosa, C.M., Menezes Bezerra Duarte, M.M. 2018. Mono and binary component, adsorption of phenol and cadmium using adsorbent derived from peanut shells. Journal of Cleaner Production, 201, 219–228. https://doi.org/10.1016/j.jclepro.2018.07.291
  • 67. Wang, Y., Tian, Y., Han, B., Zhaw, H.B., Bi, J.N., Cai, B.L. 2007. Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. Journal of Environmental Sciences, 19, 222–225. https://doi.org/10.1016/s1001-0742(07)60036-9
  • 68. Yaacoubi, H., Zidani, O., Mouflih, M., Gourai, M., Sebti, S. 2014. Removal of Cadmium from water using Natural phosphate as Adsorbent, Procedia Engineering, 83, 386–393. https://doi.org/10.1016/j.proeng.2014.09.039
  • 69. Yaacoubi, H., Songlin, Z., Mouflih, M., Gourai, M., Sebti, S. 2015. Adsorption isotherm, kinetic and mechanism studies of 2-nitrophenol on sedimentary phosphate. Mediterranean Journal of Chemistry, 4, 289–296. https://doi.org/10.13171/mjc.4.6/0151123/sebti
  • 70. Zeboudj, S., Loucif Seiad, M., Namane, A., Hank, D., Hellal A. 2014. Elimination du phenol: couplage de l’adsorption sur charbon actif et la biodegradation par pseudomonasaeruginosa. Revue de microbiologie industrielle, sanitaire, et environnementale. 8(1), 1–15. https://www.researchgate.net/publication/281637371
  • 71. Zhou, L., Hu, J., Zhong, H., Li, X. 2012. Study of phenol removal using fluidized-bed Fenton process, Chem. Eng. Res. Des., 90(2012), 377–382. https://doi.org/10.1016/j.cherd.2011.07.015
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2c7a4d93-7054-4932-a911-46523284b5d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.