Czasopismo
2015
|
Vol. 67, nr 3
|
213–-231
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
For the purpose of design and optimization of functionally graded piezoelectric material (FGPM) transducers, wave propagation in FGPM structures has received much attention in the past twenty years. But research focused essentially on semi-infinite structures and one-dimensional structures, i.e., structures with a finite dimension in only one direction, such as horizontally infinite flat plates and axially infinite hollow cylinders. This paper proposes a double orthogonal polynomial series approach to solve the wave propagation problem in a two-dimensional (2D) FGPM structure, namely, an FGPM rod with a rectangular cross-section. The dispersion curves and electric potential distributions are illustrated.
Czasopismo
Rocznik
Tom
Strony
213–-231
Opis fizyczny
Bibliogr. 23 poz., rys. kolor.
Twórcy
autor
- School of Mechanical and Power Engineering Henan Polytechnic University Jiaozuo 454003, China, yu@emails.bjut.edu.cn
- Department of Civil Engineering University of Siegen D-57068 Siegen, Germany
autor
- School of Mechanical and Power Engineering Henan Polytechnic University Jiaozuo 454003, China
autor
- University of Lille Nord de France, F-59000 Lille, France and UVHC, IEMN-DOAE, F-59313 Valenciennes Cedex 9, France and CNRS, UMR 8520, F-59650 Villeneuve d’Ascq, France
autor
- Department of Civil Engineering University of Siegen D-57068 Siegen, Germany
Bibliografia
- 1. C.C.M. Wu, M. Kahn, W. Moy, Piezoelectric ceramics with functional gradients: A new application in material design, Journal of the American Ceramic Society, 79, 3, 809–812, 1996.
- 2. K. Takagi, J.F. Li, S. Yokoyama, R. Watanabe, Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators, Journal of the European CeramicSociety, 23, 1577–1583, 2003.
- 3. X. Zhu, J. Zhu, S. Zhou, Q. Li, Z. Liu, Microstructures of the monomorph piezoelectric ceramic actuators with functional gradients, Sensors & Actuators A: Physical, 74, 198–202, 1999.
- 4. X. Li, J.S. Vartuli, D.L. Milius, I.A. Aksay, W.Y. Shih, W.H. Shih, Electromechanical properties of a ceramic d31-gradient flextensional actuator, Journal of the American Ceramic Society, 84, 5, 996–1003, 2001.
- 5. J.F. Li, K. Takagi, M. Ono, W. Pan, R. Watanabe, Fabrication and evaluation of porous ceramics and porosity-graded piezoelectric actuators, Journal of the American Ceramic Society, 86, 7, 1094–1098, 2003.
- 6. Y.H. Chen, J. Ma, T. Li, A functional gradient ceramic monomorph actuator fabricated using electrophoretic deposition, Ceramics International, 30, 683–687, 2004.
- 7. J. Qui, J. Tani, T. Ueno, T. Morita, H. Takahashi, H. Du, Fabrication and high durability of functionally graded piezoelectric bending actuators, Smart Materials and Structures, 12, 115–121, 2003.
- 8. D. Jin, Z. Meng, Functionally graded PZT/ZnO piecoelectric composites, Journal of Materials Science Letters, 22, 971–974, 2003.
- 9. G.R. Liu, J. Tani, Characteristics of wave propagation in functionally gradient piezoelectric material plates and its response analysis. Part 1: Theory. Part 2: Calculation results, Transactions of the Japan Society of Mechanical Engineers 57(A), 541, 2122–2133, 1991.
- 10. X. Han, G.R. Liu, Elastic waves in a functionally graded piezoelectric cylinder, Smart Mater. Struct., 12, 962–971, 2003.
- 11. G.R. Liu, K.Y. Dai, X. Han, T. Ohyoshi, Dispersion of waves and characteristic wave surfaces in functionally graded piezoelectric plates, Journal of Sound and Vibration, 268, 131–147, 2003.
- 12. A. Chakraborty, D. Roy Mahapatra, S. Gopalakrishnan, Finite element simulation of BAW propagation in inhomogeneous plate due to piezoelectric actuation, Lecture Notes in Computer Science, 715–724, 2003.
- 13. A. Chakraborty, S. Gopalakrishnan, E. Kausel, Wave propagation analysis in inhomogeneous piezo-composite layer by the thin-layer method, Int. J. Numer. Meth. Engng, 4, 567–598, 2005.
- 14. D. Roy Mahapatra, A. Singhal, S. Gopalakrishnan, Lamb wave characteristics of thickness-graded piezoelectric IDT, Ultrasonics, 43, 9, 736–746, 2005.
- 15. S.M. Hasheminejad, M. Alaei-Varnosfaderani, Vibroacoustic response and active control of a fluid-filled functionally graded piezoelectric material composite cylinder, Journal of Intelligent Material Systems and Structures, 23, 7, 775–790, 2012.
- 16. X.Y. Li, Z.K. Wang, S.H. Huang, Love waves in functionally graded piezoelectric materials, International Journal of Solids and Structures, 41, 7309–7328, 2004.
- 17. J. Liu, Z.K. Wang, The propagation behavior of Love waves in a functionally graded layered piezoelectric structure, Smart Mater. Struct., 14, 137–146, 2005.
- 18. L.M. Gao, J. Wang, Zh. Zhong, J.K. Du, An analysis of surface acoustic wave propagation in functionally graded plates with homotopy analysis method, Acta Mechanica, 208, 249–258, 2009.
- 19. J.E. Lefebvre, V. Zhang, J. Gazalet, T. Gryba, V. Saudane, Acoustic wave propagation in continuous functionally graded plates: an extension of the Legendre polynomial approach, IEEE Trans. Ultras. Ferr. R Freq. Control, 48, 1332–1339, 2001.
- 20. Y. Jiangong, W. Bin, C. Guoqiang, Wave characteristics in functionally graded piezoelectric hollow cylinders, Archive of Applied Mechanics, 2009, 79, 9, 807–824, 2009.
- 21. J.K. Du, X.Y. Jin, J. Wang, K. Xian, Love wave propagation in functionally graded piezoelectric material layer, Ultrasonics, 46, 1, 13–22, 2007.
- 22. S. Datta, B.J. Hunsinger, Analysis of surface waves using orthogonal functions, J. Appl. Phys., 49, 2, 475–479, 1978.
- 23. T. Hayashi , W.-J. Song, J. L. Rose, Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example, Ultrasonics, 41, 175–183, 2003.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2c714ab4-90eb-444d-975f-eae851e8c560