Warianty tytułu
Języki publikacji
Abstrakty
In this study, we have proposed a mathematical model to describe the dynamics of the spread of Middle East Respiratory Syndrome disease. The model consists of six-coupled ordinary differential equations. The existence of the corona-free equilibrium and endemic equilibrium points has been proved. The threshold condition for which the disease will die out or becomes permanent has been computed. That is the corona-free equilibrium point is locally asymptotically stable whenever the reproduction number is less than unity, and it is globally asymptotically stable (GAS) whenever the reproduction number is greater than unity. Moreover, we have proved that the endemic equilibrium point is GAS whenever the reproduction number is greater than unity. The results of the model analysis have been illustrated by numerical simulations.
Czasopismo
Rocznik
Tom
Strony
265--276
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
autor
- Department of Basic Sciences, Princess Sumaya University for Technology, Amman, Jordan, m.assi@psut.edu.jo
autor
- Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan, taqi_shatnawi@hu.edu.jo
autor
- Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan, masafi@hu.edu.jo
Bibliografia
- [1] J. S. Khan and K. Mclntosh, History and recent advances in coronavirus discovery, Pediatr. Infect. Dis. J. 24 (2005), 16378050.
- [2] World Health Organization, Middle East respiratory syndrome coronavirus (MERS-Cov), 2019, November 1.
- [3] G. Dudas, L. Carvalho, and A. Rambaut, MERS-Cov Spillover at the camel-human interface, eLive 7 (2018), 1–23.
- [4] Y. Kim, H. Ryu, and S. Lee, Effectiveness of intervention strategies on MERS-CoV transmission dynamics in South Korea, 2015: Simulations on the network based on the real-world contact data, Int. J. Environ. Res. Public Health 18 (2021), 3530.
- [5] H. Alrabaiah, M. A. Safi, M. H. DarAssi, B. Al-Hdaibat, S. Ullah, M. A. Khan, et al., Optimal control analysis of hepatitis B virus with treatment and vaccination, Results Phys. 19 (2020), 103599.
- [6] C. T. Bauch, J. O. Lloyd-Smith, and M. P. Coffee, Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future, Epidemiology 16 (2005), 791–801.
- [7] Y. Bechah, C. Capo, J. L. Mege, and D. Raoult, Epidemic typhus, Lancet Infect. Dis. 8 (2008), 417–426.
- [8] M. H. DarAssi, M. A. Safi, and B. Al-Hdaibat, A delayed SEIR epidemic model with pulse vaccination and treatment, Nonlinear Studies 25 (2018), no. 3, 1–16.
- [9] M. H. DarAssi, M. A. Safi, and M. Ahmad, Global dynamics of a discrete-time MERS-Cov model, Mathematics 9 (2021), no. 5, 563.
- [10] M. H. DarAssi and M. A. Safi, Analysis of an SIRS epidemic model for a disease geographic spread, Nonlinear Dynam. Syst. Theory 21 (2021), 1, 56–67.
- [11] M. H. DarAssi, M. A. Safi, M. A. Khan, A Beigi, A. A. Aly, and M. Y. Alshahrani, A mathematical model for SARS-CoV-2 in variable-order fractional derivative, Eur. Phys. J. Spec. Top. (2022), DOI: https://doi.org/10.1140/epjs/s11734-022-00458-0.
- [12] P. Daszak, A. A. Cunningham, and A. D. Hyat, Emerging infectious diseases of wildlife – threats to biodiversity and human health, Science 287 (2000), no. 5452, 443–449.
- [13] O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases, Chisteter: John Wiley & Son, 2000.
- [14] S. Funk, M. Salathé, and V. A. A. Jansen, Modeling the influence of human behavior on the spread of infectious diseases: a review, J. R. Soc. 50 (2010), 1247–1256.
- [15] M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, New Jersey, USA: Princeton University Press, 2008.
- [16] M. A. Khan, K. Khan, M. A. Safi, and M. H. DarAssi, A discrete model of TB dynamics in Khyber Pakhtunkhwa-Pakistan, CMES – Comput. Model. Eng. Sci. 123 (2020), no. 2, 777–795.
- [17] J. D. Murray, Mathematical Biology, Berlin: Springer-Verlag, 1989.
- [18] H. Sato, H. Nakada, R. Yamaguchi, S. Imoto, S. Miyano, and M. Kami, When should we intervene to control the 2009 influenza A(H1N1) pandemic? Euro Surveill. 15 (2010), no. 1, 19455.
- [19] M. A. Safi, A. B. Gumel, and E. H. Elbasha, Qualitative analysis of an age-structured SEIR epidemic model with treatment, Appl. Math. Comput. 219 (2013), 10627–10642.
- [20] M. A. Safi and M. H. DarAssi, Mathematical analysis of a model for ectoparasite-borne diseases, J. Comput. Methods Sci. Eng. 41 (2018), no. 17, 8248–8257.
- [21] M. A. Safi and M. H. DarAssi, Mathematical analysis of an age-structured HSV-2 model, J. Comput. Methods Sci. Eng. 19 (2019), no. 3, 841–856.
- [22] M. A. Safi, B. Al-Hdaibat, M. H. DarAssi, and M. A. Khan, Global dynamics for a discrete quarantine/isolation model, Results Phys. 21 (2021), 103788.
- [23] Z. Y. He, A. Abbes, H. Jahanshahi, N. D. Alotaibi, and Y. Wang, Fractional-order discrete-time SIR epidemic model with vaccination: chaos and complexity, Mathematics 10 (2022), 165, DOI: https://doi.org/10.3390/math10020165.
- [24] T. H. Zha, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, et al., A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math. 20 (2021), no. 1, 160–176.
- [25] M. A. Khan, K. Ali, E. Bonyah, K. O. Okosun, S. Islam, and A. Khan, Mathematical modeling and stability analysis of Pine Wilt disease with optimal control, Sci. Rep. 7 (2017), 3115, DOI: https://doi.org/10.1038/s41598-017-03179-w.
- [26] N. Trebi, Emerging and neglected infectious diseases: insights, advances, and challenges, BioMed. Res. Int. 2017 (2017), 5245021, DOI: https://doi.org/10.1155/2017/5245021.
- [27] S. Tang, W. Ma, and P. Bai, A novel dynamic model describing the spread of the MERS-CoV and the expression of dipeptidyl peptidase 4, Comput. Math. Methods. Med. 2017 (2017), 5285810.
- [28] I. Berrai, K. Adnaoui, and J. Bouyaghroumni, Mathematical study of Coronavirus (MERS-Cov), Commun. Math. Biol. Neurosci. 2020 (2020), 44.
- [29] M. Manaqib, I. Fauziah, and M. Mujiyanti, Mathematical model for Mers-CoV disease transmission with medical mask usage and vaccination, Indones. J. Pure Appl. Math. 1 (2019), 97–109.
- [30] H. R. Thieme, Mathematics in Population Biology, New Jersey, USA: Princeton University Press, 2003.
- [31] V. Lakshmikantham, S. Leela, and A. A. Matynyuk, Stability Analysis of Nonlinear Systems, New York and Basel: Marcel Dekker Inc., 1989.
- [32] H. W. Hethcote and H. R. Thieme, Stability of the endemic equilibrium in epidemic models with subpopulations, Math. Biosci. 75 (1985), 205–227.
- [33] O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, On the definition and computation of the basic reproduction ratio R0 in models for infectious disease in heterogeneous population, J. Math. Biol. 28 (1990), 365–382.
- [34] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), 29–48.
- [35] R. M. Anderson and R. M. May, Population Biology of Infectious Diseases, Berlin, Heidelrberg, New York: Springer-Verlag; 1982.
- [36] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42 (2000), 599–653.
- [37] J. Li, Y. Xiao, F. Zhang, and Y. Yang, An algebraic approach to proving the global stability of a class of epidemic models, Nonlinear Anal. Real World Appl. 28 (2012), 2006–2016.
- [38] J. Li, Y. Yang, and Y. Zhou, Global stability of an epidemic model with latent stage and vaccination, Nonlinear Anal. Real World Appl. 12 (2011), 2163–2173.
- [39] J. K. Hale, Ordinary Differential Equations, New York: John Wiley and Sons, 1969.
- [40] J. P. LaSalle, The stability of dynamical systems, CBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia: SIAM, 1976.
- [41] A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. Van den Driessche, et al., Modeling strategies for controlling SARS outbreaks, Proc. Biol. Sci. 271 (2004), 2223–2232.
- [42] Kong in Figures 2006 Edition, Census and Statistics Department Hong Kong Special Administrative Region.
- [43] G. Chowell, C. Castillo-Chavez, P. Fenimore, C. Kribs-Zaleta, L. Arriola, and J. Hyman, Model parameters and outbreak control for SARS, EID 10 (2004), 1258–1263.
- [44] C. Donnelly, A. Ghani, G. Leung, A. J. Hedley, C. Fraser, S. Riley, et al., Epidemiological determinants of spread of casual agent of severe acute respiratory syndrome in Hong Kong, Lancet. 361 (2003), 1761–1766.
- [45] G. Leung, A. Hedley, L. Ho, P. Chau, I. O. Wong, T. Q. Thach, et al., The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients, Ann. Intern. Med. 9 (2004), 662–673.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2c598d8e-f4bc-4fb2-b53e-599992e4e31a