Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 66, nr 1 | 13--20
Tytuł artykułu

Characteristic features of fine-grained coatings deposited on magnesium alloys

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This work presents the research results on the structure of gradient/monolithic coatings (Ti/Ti(C,N)/CrN, Cr/CrN/TiN) deposited onto the magnesium alloy substrate by cathodic arc evaporation method. Design/methodology/approach: The investigations were performed using scanning and transmission electron microscopy (with different image techniques) for the microstructure determination. The morphology was studied as well as the lattice parameters for the layer matrix and substrate phase identification using diffraction methods. Findings: A thin metallic layer (Ti and Cr) was deposited prior to deposition of gradient coatings to improve adhesion. It was found out that the microstructure of the PVD coatings deposited by the cathodic arc evaporation method is composed of fine crystallites and that their average size is in the range of 15-200 nm, depending on the coating type. SEM micrographs showed that the deposited coatings are characterized by compact structure without delamination or defects and they closely adhere to each other. Investigations confirm also that the Ti(C,N)/CrN and CrN/TiN coatings reveal a clearly visible transition zone between the gradient Ti(C,N) and CrN layers and the wear resistant CrN and TiN layers, obtained as a result of the separately applied metal vapour sources. Practical implications: Achieved coatings with good adhesion and without the disadvantage of delamination was made possible by cathodic arc evaporation method. Obtained properties of gradient/monolithic coatings (Ti/Ti(C,N)/CrN, Cr/CrN/TiN) deposited onto the magnesium alloy substrate and the study of them can contribute to development in a given group of materials used for different surface engineering processes. Originality/value: The original value of the work is that it applied the PVD method for a common material like magnesium alloy.
Wydawca

Rocznik
Strony
13--20
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, tomasz.tanski@polsl.pl
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Advanced Materials Technology, ul. Wrocławska 37a, 30-011 Kraków, Poland
autor
autor
  • VŠB-Technical University of Ostrava, 17 listopadu 15, 708 33 Ostrava, Czech Republic
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • VŠB-Technical University of Ostrava, 17 listopadu 15, 708 33 Ostrava, Czech Republic
Bibliografia
  • [1] E.F. Horst, B.L. Mordike, Magnesium Technology. Metallurgy, Design Data, Application, Springer- Verlag, Berlin Heidelberg, 2006.
  • [2] K.U. Kainem, Magnesium – Alloys and Technology, Willey-VH, Weinheim, Germany, 2003.
  • [3] T. Tański, L.A. Dobrzański, L. Čížek, Influence of heat treatment on structure and properties of the cast magnesium alloys, Advanced Materials Research 15- 17 (2007) 491-496.
  • [4] T. Tański, Characteristics of hard coatings on AZ61 magnesium alloys, Journal of Mechanical Engineering 59/3 (2013) 165-174.
  • [5] T. Tański, K. Labisz, K. Lukaszkowicz, Structure and properties of diamond-like carbon coatings deposited on non-ferrous alloys substrate, Solid State Phenomena 199 (2013) 170-175.
  • [6] D.S. Mehta, S.H. Masood, W.Q. Song, Investigation of wear properties of magnesium and aluminium alloys for automotive applications. Journal of Materials Processing Technology 155-156 (2004) 1526-1531.
  • [7] S. Veprek, M.J.G. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings, Surface & Coatings Technology 202 (2008) 5063-5073.
  • [8] K. Lukaszkowicz, A. Czyżniewski, W. Kwaśny, M. Pancielejko, Structure and mechanical properties of PVD coatings deposited onto the X40CrMoV5-1 hot work tool steel substrate, Vacuum 86/8 (2012) 1186-1194.
  • [9] J. Alvarez, D. Melo, O. Salas, R. Reichelt, J. Oseguera, V. Lopez, Role of Al oxide PVD coatings in the protection against metal dusting, Surface & Coatings Technology 204 (2009) 779-783.
  • [10] J. Bujak, J. Walkowicz, J. Kusiński, Influence of the nitrogen pressure on the structure and properties of (Ti,Al)N coatings deposited by cathodic vacuum arc PVD process, Surface and Coatings Technology 180- 181 (2004) 150-157.
  • [11] H. Schäfer, H.R. Stock, Improving the corrosion protection of aluminum alloys using reactive magnetron sputtering, Corrosion Science 47 (2005) 953-964.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2c35542b-6051-405c-b6de-de6f2c4cdceb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.