Warianty tytułu
Języki publikacji
Abstrakty
This study sought to use tropical almond leaves (TALs) for the simple fabrication of iron-containing activated carbon (IAC). Iron precursor (FeCl3 ) and activating agent (KOH) were sequentially preloaded in TALs. One-pot pyrolysis then generated iron-based particles (8.7 wt%), mainly metallic iron crystals, within AC support. The specific saturation magnetization of IAC was measured to be 48.9 emu/g, highlighting its ability to be efficiently separated using external magnetic fields. Moreover, the activation process yielded IAC with a large total volume of 0.28 cm3/g and a high specific surface area of 463 m2/g. Accordingly, IAC was investigated as an oxidation catalyst to degrade methylene blue (MB) by H2O2. At pH 3.0, 800 ppm H2O2, and 0.10 g/L IAC, 95.3% of MB (200 ppm) was removed after 30 min of adsorption and 60 min of oxidation. Altogether, iron-containing activated carbon from fallen leaves of tropical almonds proved its potential for robust methylene blue degradation by H2O2.
Czasopismo
Rocznik
Tom
Strony
54--61
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
autor
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
autor
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
autor
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
autor
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
autor
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
autor
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
autor
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam, nvdung@hcmut.edu.vn
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
Bibliografia
- 1. Ko T.-F., Weng Y.-M., Lin S.-B. and Chiou R.Y.Y. 2003. Antimutagenicity of supercritical CO2 extracts of Terminalia catappa leaves and cytotoxicity of the extracts to human hepatoma cells. Journal of Agricultural and Food Chemistry, 51(12), 3564–3567.
- 2. Vinturelle R., Cabral T.d.S., Oliveira P.C.O. d., Salles J.P., Faria J.V., Teixeira G.P., Faria R.X., Veloso M.C.C., Romeiro G.A. and Chagas E.F. d. 2024. Slow pyrolysis of Terminalia catappa L. municipal solid waste and the use of the aqueous fraction produced for bovine mastitis control. Biochemistry and Biophysics Reports, 38, 101704.
- 3. Pereira H., Simões R. and Miranda I. 2023. Cuticular waxes and cutin in Terminalia catappa leaves from the Equatorial São Tomé and Príncipe islands. Molecules, 28(17), 6365.
- 4. Eddy N.O., Ekwumemgbo P.A. and Mamza P.A.P. 2009. Ethanol extract of Terminalia catappa as a green inhibitor for the corrosion of mild steel in H2 SO4 . Green Chemistry Letters and Reviews, 2(4), 223–231.
- 5. Oyeleye S.I., Adebayo A.A., Ogunsuyi O.B., Dada F.A. and Oboh G. 2017. Phenolic profile and enzyme inhibitory activities of almond (Terminalia catappa) leaf and stem bark. International Journal of Food Properties, 20(3), 2810–2821.
- 6. Madhavan K., Rukayadi Y. and Abdul-Mutalib N.A. 2023. Controlling vegetative cells and spores growth of Bacillus spp. using ethanolic Ketapang (Terminalia catappa L.) leaf extract. Heliyon, 9(8), e18749.
- 7. Sousa J.C.G., Ribeiro A.R., Barbosa M.O., Pereira M.F.R. and Silva A.M.T. 2018. A review on environmental monitoring of water organic pollutants identified by EU guidelines. Journal of Hazardous Materials, 344, 146–162.
- 8. Lu F. and Astruc D. 2020. Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coordination Chemistry Reviews, 408, 213180.
- 9. Chen J.-Q., Sharifzadeh Z., Bigdeli F., Gholizadeh S., Li Z., Hu M.-L. and Morsali A. 2023. MOF composites as high potential materials for hazardous organic contaminants removal in aqueous environments. Journal of Environmental Chemical Engineering, 11(2), 109469.
- 10. Rasheed T., Shafi S., Bilal M., Hussain T., Sher F. and Rizwan K. 2020. Surfactants-based remediation as an effective approach for removal of environmental pollutants–A review. Journal of Molecular Liquids, 318, 113960.
- 11. Titchou F.E., Zazou H., Afanga H., El Gaayda J., Ait Akbour R., Nidheesh P.V. and Hamdani M. 2021. Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chemical Engineering and Processing - Process Intensification, 169, 108631.
- 12. Mukhopadhyay A., Duttagupta S. and Mukherjee A. 2022. Emerging organic contaminants in global community drinking water sources and supply: A review of occurrence, processes and remediation. Journal of Environmental Chemical Engineering, 10(3), 107560.
- 13. Morin-Crini N., Lichtfouse E., Fourmentin M., Ribeiro A.R.L., Noutsopoulos C., Mapelli F., Fenyvesi É., Vieira M.G.A., Picos-Corrales L.A., Moreno-Piraján J.C., Giraldo L., Sohajda T., Huq M.M., Soltan J., Torri G., Magureanu M., Bradu C. and Crini G. 2022. Removal of emerging contaminants from wastewater using advanced treatments. A review. Environmental Chemistry Letters, 20(2), 1333–1375.
- 14. Aravind kumar J., Krithiga T., Sathish S., Renita A.A., Prabu D., Lokesh S., Geetha R., Namasivayam S.K.R. and Sillanpaa M. 2022. Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis. Science of The Total Environment, 831, 154808.
- 15. Liu Y. and Wang J. 2023. Multivalent metal catalysts in Fenton/Fenton-like oxidation system: A critical review. Chemical Engineering Journal, 466, 143147.
- 16. Nasir M.J., Kadhum Z.F., Kariem N.O. and Jasim Z.M. 2022. Removal of sesame oil from artificial wastewater applying fenton process and comparing it with actual wastewater. Journal of Ecological Engineering, 23(10), 248–254.
- 17. Shokri A. and Fard M.S. 2022. A critical review in Fenton-like approach for the removal of pollutants in the aqueous environment. Environmental Challenges, 7, 100534.
- 18. Wang N., Zheng T., Zhang G. and Wang P. 2016. A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1), 762–787.
- 19. Hussain S., Aneggi E. and Goi D. 2021. Catalytic activity of metals in heterogeneous Fenton-like oxidation of wastewater contaminants: a review. Environmental Chemistry Letters, 19(3), 2405–2424.
- 20. Liang L., Cheng L., Zhang Y., Wang Q., Wu Q., Xue Y. and Meng X. 2020. Efficiency and mechanisms of rhodamine B degradation in Fenton-like systems based on zero-valent iron. RSC Advances, 10(48), 28509–28515.
- 21. Conde-Cid M., Paíga P., Moreira M.M., Albergaria J.T., Álvarez-Rodríguez E., Arias-Estévez M. and Delerue-Matos C. 2021. Sulfadiazine removal using green zero-valent iron nanoparticles: A low-cost and eco-friendly alternative technology for water remediation. Environmental Research, 198, 110451.
- 22. Zha S., Cheng Y., Gao Y., Chen Z., Megharaj M. and Naidu R. 2014. Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. Chemical Engineering Journal, 255, 141–148.
- 23. Xie S., Su J., Zhao J., Yang H. and Qian H. 2022. An amorphous zero-valent iron decorated by Fe3 O4 significantly improves the Fenton-like reaction. Journal of Alloys and Compounds, 929, 167306.
- 24. Xia J., Shen Y., Zhang H., Hu X., Mian M. M. and Zhang W.-H. 2022. Synthesis of magnetic nZVI@ biochar catalyst from acid precipitated black liquor and Fenton sludge and its application for Fentonlike removal of rhodamine B dye. Industrial Crops and Products, 187, 115449.
- 25. Tseng H.-H., Su J.-G. and Liang C. 2011. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene. Journal of Hazardous Materials, 192(2), 500–506.
- 26. Messele S.A., Soares O.S.G.P., Órfão J.J.M., Bengoa C., Stüber F., Fortuny A., Fabregat A. and Font J. 2015. Effect of activated carbon surface chemistry on the activity of ZVI/AC catalysts for Fenton-like oxidation of phenol. Catalysis Today, 240, 73–79.
- 27. Messele S.A., Bengoa C., Stüber F., Fortuny A., Fabregat A. and Font J. 2016. Catalytic wet peroxide oxidation of phenol using nanoscale zero-valent iron supported on activated carbon. Desalination and Water Treatment, 57(11), 5155–5164.
- 28. Do T.V.T., Bui Q.L.N., Nguyen H.M., Lam H.H., Tran-Thuy T.-M., Nguyen L.Q., Ngo D.T.H. and Nguyen D.V. 2022. One-pot fabrication of magnetic biochar by FeCl3-activation of lotus seedpod and its catalytic activity towards degradation of Orange G. Mater. Res. Express, 9, 105601.
- 29. Nguyen H.M., Truong T.B., Nguyen H.-H.T., Tran P.T., Tran-Thuy T.-M., Nguyen L.Q. and Nguyen D.V. 2023. Catalytic ozonation of Ponceau 4R using multifunctional magnetic biochar prepared from rubber seed shell. Journal of Ecological Engineering, 24(12), 143–151.
- 30. Nguyen H.M., Tran A.T., Nguyen D.N.L., Lam H.H., Tran-Thuy T.-M., Nguyen L.Q., Le T.X. and Nguyen D.V. 2023. One-pot fabrication of zero-valent iron-embedded activated carbon from rosemary distillation residues for malachite green removal. Mater. Res. Express, 10(8), 085603.
- 31. Rezaei F. and Vione D. 2018. Effect of pH on zero valent iron performance in heterogeneous Fenton and Fenton-like processes: A review. Molecules, 23(12), 3127.
- 32. Xu L. and Wang J. 2011. A heterogeneous Fentonlike system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. Journal of Hazardous Materials, 186(1), 256–264.
- 33. Wang L., Yang J., Li Y., Lv J. and Zou J. 2016. Removal of chlorpheniramine in a nanoscale zerovalent iron induced heterogeneous Fenton system: Influencing factors and degradation intermediates. Chemical Engineering Journal, 284, 1058–1067.
- 34. Huang T., Zhang G., Zhang N., Ye J. and Lu P. 2018. Fe0-H2 O2 for advanced treatment of citric acid wastewater: Detailed study of catalyst after several times use. Chemical Engineering Journal, 336, 233–240.
- 35. Segura Y., Martínez F. and Melero J.A. 2013. Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron. Applied Catalysis B: Environmental, 136–137, 64–69.
- 36. Zhang M.-h., Dong H., Zhao L., Wang D.-x. and Meng D. 2019. A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of The Total Environment, 670, 110–121.
- 37. Lv X., Ma Y., Li Y. and Yang Q. 2020. Heterogeneous Fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid by nano-scale zero-valent iron assembled on magnetite nanoparticles. Water, 12(10), 2909.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2bdb1cb7-fbe4-48b0-bf67-f367b003208c