Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, iss. 8 | 107--119
Tytuł artykułu

Synthesis of Mn-Co-Ni Composite Electrode by Anodic and Cathodic Electrodeposition for Indirect Electro-oxidation of Phenol: Optimization of the Removal by Response Surface Methodology

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, Response Surface Methodology (RSM) was utilized to optimize process variables and find the best circumstances for indirect electrochemical oxidation of mimicked wastewater to remove phenol contaminants using prepared ternary composite electrode. The electrodeposition process is used for the synthesis of a ternary composite electrode of Mn, Co, and Ni oxides. The selected concentrations of metal salts of these elements were 0.05, 0.1, and 1.5 M, with constant molar ratio, current density, and electrolysis time of 1:1:1, 25 mA/cm2, and 2 h. Interestedly, the gathered Mn-Co-Ni oxides were deposited at both the anode and cathode. X-ray diffraction (XRD) and scanning electron microscopy (SEM) facilitated the qualitative characterization of surface structure and morphology of the accumulated oxides. The energy dispersive X-ray (EDX) provided a semi-quantitative analysis of deposit composition. The atomic force microscopy (AFM) apparatus quantified the roughness. We examined the efficiency of composite electrodes in coinciding with the removal of Chemical Oxygen Demand (COD) under current densities of 40, 60, and 80 mA/cm2, pH values of 3, 4, and 5, and NaCl concentrations of 1, 1.5, 2 g/l. RSM covered the optimization of process parameters in conjunction with Central Composite Design (CCD). The COD represented the response function in the optimization procedure. The optimal current density, NaCl concentration, and pH magnitude were 80 mA/cm2, 1.717 g/l, and 3, respectively. The efficiency of COD elimination of 99.925% attained after 1 hour of indirect electrochemical oxidation with an energy consumption of 152.380 kWh per kilogram of COD. The COD elimination model is significant based on the correlation coefficient (R2) and F-values, and the experimental data fitted well to a second-order polynomial model with R2 of 98.93%.
Wydawca

Rocznik
Strony
107--119
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
  • 1. Abbar A. H., Alkurdi S. S. 2021. Performance evaluation of a combined electrocoagulation– electrooxidation process for the treatment of petroleum refinery wastewater. IOP Conference Series: Materials Science and Engineering, 1076(1), 012027.
  • 2. Abbas A. S., Hafiz M. H., Salman R. H. 2016. Indirect electrochemical oxidation of phenol using rotating cylinder reactor. Iraqi Journal of Chemical and Petroleum Engineering, 17(4), 43–55.
  • 3. Abbas R. N., Abbas A. S. 2022. Kinetics and energetic parameters study of phenol removal from aqueous solution by electro-fenton advanced oxidation using modified electrodes with PbO2 and graphene. Iraqi Journal of Chemical and Petroleum Engineering, 23(2), 1–8.
  • 4. Abbas Z. I., Abbas A. S. 2019. Oxidative degradation of phenolic wastewater by electro-fenton process using MnO2 graphite electrode. Journal of Environmental Chemical Engineering, 7(3).
  • 5. Abebe E. M., Ujihara M. 2022. Simultaneous electrodeposition of ternary metal oxide nanocomposites for high-efficiency supercapacitor applications. ACS Omega, 7(20), 17161–17174.
  • 6. Adil Sabbar H. 2019. Adsorption of phenol from aqueous solution using paper waste. Iraqi Journal of Chemical and Petroleum Engineering, 20(1), 23–29.
  • 7. Ahmed Y. A., Salman R. H. 2023. Simultaneous electrodeposition of multicomponent of Mn–Co–Ni oxides electrodes for phenol removal by anodic oxidation. Case Studies in Chemical and Environmental Engineering, 8.
  • 8. Al-Yaqoobi A.M., Al-Rikabey M.N., Algharrawi K.H.R. 2021. Treatment of dairy wastewater by electrocoagulation and ultrasonic-assisted electrocoagulation methods. Environmental Engineering & Management Journal, 20(6), 949–957.
  • 9. Asaithambi P., Govindarajan R., Yesuf M. B., Alemayehu E. 2020. Removal of color, COD and determination of power consumption from landfill leachate wastewater using an electrochemical advanced oxidation processes. Separation and Purification Technology, 233.
  • 10. Atta N. F., El-Ads E. H., Galal A. 2016. Self-assembled monolayers on nanostructured composites for electrochemical sensing applications. Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques (417–478), Springer International Publishing.
  • 11. Chakawa S., Aziz M. 2021. Investigating the result of current density, temperature, and electrolyte concentration on cod: Subtraction of petroleum refinery wastewater using response surface methodology. Water (Switzerland), 13(6).
  • 12.Chelladurai S. J. S., Murugan K., Ray A. P., Upadhyaya M., Narasimharaj V., Gnanasekaran S. 2020. Optimization of process parameters using response surface methodology: A review. Materials Today: Proceedings, 37, 1301–1304.
  • 13. Cysewska K., Rybarczyk M. K., Cempura G., Karczewski J., Łapiński M., Jasinski P., Molin S. 2020. The influence of the electrodeposition parameters on the properties of Mn-Co-based nanofilms as anode materials for alkaline electrolysers. Materials, 13(11).
  • 14. Demirel C., Kabutey A., Herák D., Sedlaček A., Mizera Č., Dajbych O. 2022. Using Box–Behnken Design Coupled with Response Surface Methodology for Optimizing Rapeseed Oil Expression Parameters under Heating and Freezing Conditions. Processes, 10(3).
  • 15. Doumbi R. T., Bertrand Noumi G., Ngobtchok B., Domga. 2022. Tannery wastewater treatment by electro-Fenton and electro-persulfate processes using graphite from used batteries as free-cost electrode materials. Case Studies in Chemical and Environmental Engineering, 5.
  • 16. El Boraei N. F., Ibrahim M. A. M. 2019. Black binary nickel cobalt oxide nano-powder prepared by cathodic electrodeposition; characterization and its efficient application on removing the Remazol Red textile dye from aqueous solution. Materials Chemistry and Physics, 238.
  • 17.Jadhav S. M., Kalubarme R. S., Suzuki N., Terashima C., Mun J., Kale B. B., Gosavi S. W., Fujishima A. 2021. Cobalt-Doped Manganese Dioxide Hierarchical Nanostructures for Enhancing Pseudocapacitive Properties. ACS Omega, 6(8), 5717–5729.
  • 18.Jirátová K., Perekrestov R., Dvořáková M., Balabánová J., Koštejn M., Veselý M., Čada M., Topka P., Pokorná D., Hubička Z., Kovanda F. 2021. Modification of cobalt oxide electrochemically deposited on stainless steel meshes with Co-Mn thin films prepared by magnetron sputtering: Effect of preparation method and application to ethanol oxidation. Catalysts, 11(12).
  • 19. Li M., Cheng J. P., Wang J., Liu F., Zhang X. B. 2016. The growth of nickel-manganese and cobalt manganese layered double hydroxides on reduced graphene oxide for supercapacitor. Electrochimica Acta, 206, 108–115.
  • 20. Ibrahim H. M., Salman R. H. 2022. Study the Optimization of Petroleum Refinery Wastewater Treatment by Successive Electrocoagulation and Electro-oxidation Systems. Iraqi Journal of Chemical and Petroleum Engineering, 23(1), 31–41.
  • 21. Massa A., Hernández S., Lamberti A., Galletti C., Russo N., Fino D. 2017. Electro-oxidation of phenol over electrodeposited MnOx nanostructures and the role of a TiO2 nanotubes interlayer. Applied Catalysis B: Environmental, 203, 270–281.
  • 22. Nady H., El-Rabiei M. M., El-Hafez G. M. A. 2017. Electrochemical oxidation behavior of some hazardous phenolic compounds in acidic solution. Egyptian Journal of Petroleum, 26(3), 669–678.
  • 23. Oliveira E. M. S., Silva F. R., Morais C. C. O., Oliveira T. M. B. F., Martínez-Huitle C. A., Motheo A. J., Al-buquerque C. C., Castro S. S. L. 2018. Performance of (in)active anodic materials for the electrooxidation of phenolic wastewaters from cashew-nut processing industry. Chemosphere, 201, 740–748.
  • 24. Panwar V., Kumar Sharma D., Pradeep Kumar K. V., Jain A., Thakar C. 2020. Experimental investigations and optimization of surface roughness in turning of en 36 alloy steel using response surface methodology and genetic algorithm. Materials Today: Proceedings, 46, 6474–6481.
  • 25. Periyasamy S., Muthuchamy M. 2018. Electro-chemical oxidation of paracetamol in water by graphite anode: Effect of pH, electrolyte concentration and current density. Journal of Environmental Chemical Engineering, 6(6), 7358–7367.
  • 26. Sarabia L. A., Ortiz M. C., Sánchez M. S. 2020. Response Surface Methodology. Comprehensive Chemometrics, 287–326.
  • 27. Särkkä H., Bhatnagar A., Sillanpää M. 2015. Recent developments of electro-oxidation in water treatment – A review. Journal of Electroanalytical Chemistry.
  • 28. Sayyed S. G., Mahadik M. A., Shaikh A. V, Jang J. S., Pathan H. M. 2019. Nano-metal oxide based supercapacitor via electrochemical deposition. ES Energy & Environment.
  • 29. Srivastava M., Maheshwari S., Kundra T., Rathee S. 2017. Multi-response optimization of fused deposition modelling process parameters of ABS using response surface methodology (RSM)-based desirability analysis. Materials Today: Proceedings, 4, 1972–1977.
  • 30. Sui Q., Xiang C., Zou Y., Yan E., Zhang H., Xu F., Sun L. 2019. Facile synthesis of Co-Ni-Mn oxide for high performance supercapacitor. International Journal of Electrochemical Science, 14, 10710–10719.
  • 31. Tahmasebi M. H., Vicenzo A., Hashempour M., Bestetti M., Golozar M. A., Raeissi K. 2016. Nanosized Mn-Ni oxide thin films via anodic electro-deposition: A study of the correlations between morphology, structure and capacitive behaviour. Electrochimica Acta, 206, 143–154.
  • 32. Tasic Z., Gupta V. K., Antonijevic M. M. 2014. The Mechanism and kinetics of degradation of phenolics in wastewaters using electrochemical oxidation. Int. J. Electrochem. Sci., 9.
  • 33. Teguia Doumbi R., Noumi G. B., Domga. 2021. Dip coating deposition of manganese oxide nanoparticles on graphite by sol gel technique for the indirect electrochemical oxidation of methyl orange dye: Parameter’s optimization using box-behnken design. Case Studies in Chemical and Environmental Engineering, 3.
  • 34. Yan Z., Liu H., Hao Z., Yu M., Chen X., Chen J. 2020. Electrodeposition of (hydro)oxides for an oxygen evolution electrode. Chemical Science. Royal Society of Chemistry.
  • 35. Zhu K., Qi H., Sun X., Sun Z. 2019. Anodic oxidation of diuron using Co3O4 /graphite composite electrode at low applied current. Electrochimica Acta, 299, 853–862.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2ba7278d-0939-4db0-9fee-d2211df3f6df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.