Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no. 4 | 593--602
Tytuł artykułu

Determination of static flow characteristics of a prototypical differential valve using computational fluid dynamics

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes the numerical calculations of a conceptual air brake valve of a trailer equipped with a differential section, which is intended to shorten response time and braking distance. The static flow characteristics have been determined using computational fluid dynamics (CFD). Mixed (global and local) computational meshes were used in the paper to determine the static flow characteristics of the valve sections. The use of the local mesh was relevant for valve openings smaller than 0.5mm. Using CFD, it was possible to determine the static flow characteristics of the main, auxiliary feed and the differential sections, which were linear, degressive and progressive depending on the section. The analyzes, which have not yet been described in the literature, showed a signifi-cant difference in the MFR of the additional and main feed tracts, which reached 52.29%.The results are applicable to the configuration of the braking system. Further research will include performing dynamic simulations using dedicated software and building a test rig to validate the CFD calculation results.
Wydawca

Rocznik
Strony
593--602
Opis fizyczny
Bibliogr. 37 poz.rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland, marcin.kisiel@sd.pb.edu.pl
  • Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland, d.szpica@pb.edu.pl
Bibliografia
  • 1. Polichshuk Y, Laptev N, Komarov A, Murzabekov T, Grebenyuk K. Development of agrotechnological requirements for manufacturers of technical tools and agricultural products used in precision farm-ing. Siberian Herald of Agricultural Science. 2023;53:98–106.
  • 2. Polischuk Y, Laptev N, Komarov A. The use of automatic and parallel driving systems in agricultural production of the Republic of Kazakhstan and the efficiency of their use. Agrarian Bulletin of the. 2020;196:11–9.
  • 3. Ume C. The role of improved market access for small-scale organ-ic farming transition: Implications for food security. J Clean Prod [Internet]. 2023;387:135889. Available from: https://www.science direct.com/science/article/pii/S0959652623000471
  • 4. Squalli J, Adamkiewicz G. The spatial distribution of agricultural emissions in the United States: The role of organic farming in miti-gating climate change. J Clean Prod [Internet]. 2023;414:137678. Available from: https://www.sciencedirect.com/science/article/pii/ S095965262301836X
  • 5. Sivaranjani S, Rakshit A. Organic Farming in Protecting Water Quality. In: Organic Farming. 2019; 1–9.
  • 6. Parizad S, Bera S. The effect of organic farming on water reusabil-ity, sustainable ecosystem, and food toxicity. Environmental Sci-ence and Pollution Research. 2021 Sep;30:1–12.
  • 7. Vdovin S, Bogatyrev M, Nikonorov K, Korotkov P. Reducing the fluid loss in case of depressurization of tractors’ hydraulic drive. Tractors and Agricultural Machinery. 2023;90:5–12.
  • 8. von Uexküll O, Skerfving S, Doyle R, Braungart M. Antimony in brake pads-a carcinogenic component? J Clean Prod [Internet]. 2005;13(1):19–31. Available from: https://www.sciencedirect.com/ science/article/pii/S0959652603001835
  • 9. Liu Y, Wu S, Chen H, Federici M, Perricone G, Li Y, et al. Brake wear induced PM10 emissions during the world harmonised light-duty vehicle test procedure-brake cycle. J Clean Prod [Internet] 2022;361:132278. Available from: https://www.sciencedirect.com/ science/article/pii/S0959652622018820
  • 10. Commision Regulation (EU) No 1230/2012 of 12 December 2012 implementing Regulation (EC) No 661/2009 of the European Par-liament and of the Council with regard to type-approval require-ments for masses and dimensions of motor vehicles and their trail-ers and amending Directive 2007/46/EC of the European Parlia-ment and of the Council.
  • 11. Koonthalakadu Baby D, Sridhar N, Patil H, Subramanian S. Delay compensated pneumatic brake controller for heavy road vehicle active safety systems. Proc Inst Mech Eng C J Mech Eng Sci. 2020;235.
  • 12. Kazama T. Comparison of power density of transmission elements in hydraulic, pneumatic, and electric drive systems. Mechanical Engineering Letters. 2019;5.
  • 13. Kisiel M, Szpica D, Czaban J. Determination of the flow character-istics of the trailer brake valve using computational fluid mechan-ics. In: Proceedings of the 27th International Scientific Conference Mechanika. 2023.
  • 14. Subramanian S. Electro-Pneumatic Brakes for Commercial Vehi-cles – Model Based Analysis for Control and Diagnosis. In: Schritte in die künftige Mobilität. 2013; 133–45.
  • 15. Kisiel M, Szpica D, Czaban J. Effect of differential valve chamber volume on trailer brake system response time. In: Mechanika 2022 Proceedings of the 26th International Scientific Conference. Kau-nas: Kaunas University of Technology. 2022;32–3.
  • 16. Basara B, Krajnović S, Pavlovic Z, Ringqvist P. Performance analysis of Partially-Averaged Navier-Stokes method for complex turbulent flows. 2011.
  • 17. Huang X, Pang B, Chai X, Yin Y. Proposal of a turbulent Prandtl number model for Reynolds-averaged Navier–Stokes approach on the modeling of turbulent heat transfer of low-Prandtl number liquid metal. Front Energy Res. 2022;10:928693.
  • 18. Sang Y, Wang X, Sun W. Analysis of fluid flow through a bidirec-tional cone throttle valve using computational fluid dynamics. Aus-tralian Journal of Mechanical Engineering. 2019;19:1–10.
  • 19. Lee JH, Song X, Park YC, Kang SM. Computational fluid dynamic analysis of flow coefficient for pan check valve. In: Proceedings of the 9th WSEAS International Conference on Applied Computer and Applied Computational Science. ACACOS ’10. 2010; 157–60.
  • 20. Zhou XM, Wang ZK, Zhang YF. A simple method for high-precision evaluation of valve flow coefficient by computational fluid dynamics simulation. Advances in Mechanical Engineering. 2017;9.
  • 21. Gabel T, Mitra H, Williams D, Koeck F, Ostilla-Mónico R, Alba K. Incompressible flow through choke valve: An experimental and computational investigation. J Fluids Struct. 2022;113:103669.
  • 22. Garcia S, Iglesias-Rey P, Mora-Meliá D, Martinez-Solano F, Fuer-tes-Miquel V. Computational Determination of Air Valves Capacity Using CFD Techniques. Water (Basel). 2018;10:1433.
  • 23. Mitra H, Gabel T, Williams D, Koeck F, Ostilla-Mónico R, Alba K. Computational study of compressible flow through choke valve. J Fluids Struct. 2022;113.
  • 24. Hazzi F, Cardona CS, Pairetti C, Venier C. CFD analysis on flow control using a ball valve. Anales AFA. 2022;33:21–5.
  • 25. Gukop N, Kamtu P, Lengs B, Babawuya A, Adegoke A. Effect of Mesh Density on Finite Element Analysis Simulation of a Support Bracket. FUOYE Journal of Engineering and Technology. 2021;6.
  • 26. Lubimyi N, Mihail G, Andrey P, Arseniy S. Methodology for the Selection of Optimal Parameters of the Finite Element Mesh in Composite Materials Calculation. In 2023. p. 66–72.
  • 27. Pisarciuc C, Dan I, Cioară R. The Influence of Mesh Density on the Results Obtained by Finite Element Analysis of Complex Bodies. Materials. 2023;16:2555.
  • 28. Jurkowski S, Janisz K. Analiza wpływu parametrów siatki oblicze-niowej na wynik symulacji przepływomierza. Autobusy. 2020;12:129–34.
  • 29. Kamiński Z, Kulikowski K. Measurement and evaluation of the quality of static characteristics of brake valves for agricultural trail-ers. Measurement. 2017;106:173–8.
  • 30. Kamiński Z, Kulikowski K. Determination of the functional and service characteristics of the pneumatic system of an agricultural tractor with mechanical brakes using simulation methods. Ek-sploatacja i Niezawodnosc. 2015;17(3):355–64.
  • 31. Kamiński Z. Mathematical modelling of the trailer brake control valve for simulation of the air brake system of farm tractors equipped with hydraulically actuated brakes. Maintenance and Re-liability. 2014;16(4):637–43.
  • 32. Wu CC, Völker D, Weisbrich S, Neitzel F. The finite volume meth-od in the context of the finite element method. Mater Today Proc. 2022;62.
  • 33. Yang P, Wang X, Li Y. Construction and analysis of the quadratic finite volume methods on tetrahedral meshes. Sci China Math. 2023;66:855–86.
  • 34. Jonuskaite A. Flow simulation with SolidWorks. [Helsinki]: Arcada University of Applied Sciences. 2017.
  • 35. Sobachkin A, Dumnov G. Numerical Basis of CAD-Embedded CFD. NAFEMS World Congress. 2013.
  • 36. Wang F, di Mare L. Favre-Averaged Nonlinear Harmonic Method for Compressible Periodic Flows. AIAA Journal. 2019;57:1–10.
  • 37. Pavlenko A, Nadrygailo T. On one simulation method of turbulent flows. Journal of New Technologies in Environmental Science. 2019;3(4):169–78.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2b7103f6-9cc3-4347-a97a-fbbf762589ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.