Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 67, No. 4 | art. no. 42
Tytuł artykułu

PAHs and organophosphorus substances in burnt landfill material as a potential source of water and soil pollution

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Illegal landfills pose a potential threat to the aquatic environment due, in part, to the unprotected subsoil beneath them. We describe the toxicity of soil samples and incinerated solid waste from two illegal landfills in Poland, and discuss the potential negative impact on groundwater. Fifty samples were taken, including 32 from an illegal landfill in Trzebinia (southern Poland), and analysed by GC-MS. The PAHs detected included naphthalene, fluorene, phenanthrene, anthracene, acenaphthene, acenaphthylene, fluoranthene, pyrene, benzo(c)phenanthrene, benzo(a)anthracene, chrysene, benzo(b+k)fluoranthene, benzo(a)fluoranthene, benzo(c)fluoranthene, benzo(a)pyrene, benzo(e)pyrene, perylene, indeno[1,2,3-cd]pyrene, benzo(ghi)perylene and dibenzo(a+h)anthracene. The organophosphates detected were tris-(2-chloroisopropyl) phosphate, trisphenyl phosphate, tri-cresyl phosphate, tri(butoxyethyl)phosphate and tris(2-chloroethyl) phosphate. PAHs at <50 ppm/g predominate in the samples, though samples with total PAHs ranging to >100 ppm/g were also identified in both study areas. Among the organic phosphate concentrations in the leachates, tris-(2-chloroisopropyl) phosphate was most frequently observed, with concentrations reaching ~0.7 µg/l. These compounds within burnt waste and soil can negatively impact the safety of groundwater. Constant monitoring and research is needed to assess the negative effects of waste fires on unsealed ground beneath, and to help prevent further instances.
Słowa kluczowe
Wydawca

Rocznik
Strony
art. no. 42
Opis fizyczny
Bibliogr. 79 poz., fot., rys., tab., wykr.
Twórcy
  • University of Silesia, Faculty of Natural Sciences, Poland
  • University of Silesia, Faculty of Natural Sciences, Poland
  • University of Silesia, Faculty of Natural Sciences, Poland
  • University of Tabriz, Center of Excellence in Hydroinformatics and Faculty of Civil Engineering, Iran
  • University of Silesia, Faculty of Natural Sciences, Poland
Bibliografia
  • 1. Abdel-Rasaq, S.M., 2012. A study of aliphatic and aromatic levels of some waters and sediments at AL-Gabal AL-Akder coast regions. Diss. MSc thesis, Chemistry department, Omer EL-Mukthar University, Libya.
  • 2. Abdel-Shafy, H.I., Mansour, M.S.M., 2016. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25: 107-123. https://doi.org/10.1016/j.ejpe.2015.03.011
  • 3. Adeniji, A.O., Okoh, O.O., Okoh, A.I., 2018. Analytical methods for polycyclic aromatic hydrocarbons and their global trend of distribution in water and sediment: a review. In: Recent Insights in Petroleum Science and Engineering (ed. M. Zoveidavianpoor). IntechOpen, UK.
  • 4. Alk Jaffar, Y., LeeYook, H., Salmijah, S., 2009. Toxicity testing and the effect of landfill leachate in Malaysia on behavior of common carp (Cyprinus carpio L., 1758; Pisces, Cyprinidae). American Journal of Environmental Sciences, 5: 209-217. https://doi.org/10.3844/ajessp.2009.209.217
  • 5. Almouallem, W., Michel, J., Dorge, S., Joyeux, C., Trouvé, G., Le Nouen, D., 2023. A comparative study of the sorption of O-PAHs and PAHs onto soils to understand their transport in soils and groundwater. Journal of Environmental Sciences, 124: 61-75. https://doi.org/10.1016/j.jes.2021.11.001
  • 6. Bandowe, B.A.M., Bigalke, M., Kobza, J., Wilcke, W., 2018. Sources and fate of polycyclic aromatic compounds (PAHs, oxygenated PAHs and azaarenes) in forest soil profiles opposite of an aluminium plant. Science of the Total Environment, 630: 83-95. https://doi.org/10.1016/j.scitotenv.2018.02.109
  • 7. Benlahcen, K.T., Chaoui, A., Budzinski, H., Garrigues, Ph., 1997. Distribution and sources of polycyclic aromatic hydrocarbons in some Mediterranean coastal sediments. Marine Pollution Bulletin, 34: 298-305. https://doi.org/10.1007/s11270-008-9904-8
  • 8. Bojakowska, I., 1994. The influence of anthropogenic factor on geochemical processes in the surface layers of the lithosphere (in Polish with English summary). Instrukcje i Metody Badań Geochemicznych, 53: 1-199.
  • 9. Boruszko, D., Wojciula, A., 2022. Heavy metals and polycyclic aromatic hydrocarbons in leachates from autothermal thermophilic aerobic digestion as a potential threat to the environment in north-eastern Poland. Studia Quaternaria, 31: 15-22. https://doi.org/10.24425/sq.2022.140882
  • 10. Bouzid, I., Maire, J., Brunol, E., Caradec, S., Fatin-Rouge, N., 2017. Compatibility of surfactants with activated-persulfate for the selective oxidation of PAH in groundwater remediation. Journal of Environmental Chemical Engineering, 5: 6098-6106. https://doi.org/https://doi.org/10.1016/j.jece.2017.11.038
  • 11. Brandsma, S.H., de Boer, J., Leonards, P.E.G., Cofino, W.P., Covaci, A., Leonards, P.E.G., 2013. Organophosphorus flame-retardant and plasticizer analysis, including recommendations from the first worldwide interlaboratory study. TrAC Trends in Analytical Chemistry, 43: 217-228. https://doi.org/10.1016/j.trac.2012.12.004
  • 12. Bruchajzer, E., Frydrych, B., Szymańska, J.A., 2015. Fosforowe związki organiczne zmniejszające palność - toksyczność i wpływ na zdrowie ludzi (in Polish). Medycyna Pracy, 66: 235-264. https://doi.org/10.13075/mp.5893.00120
  • 13. Castro-Jimenez, J., Berrojalbiz, N., Pizarro, M., Dachs, J., 2014. Organophosphate ester (OPE) flame retardants and plasticizers in the open Mediterranean and Black Seas atmosphere. Environmental Science and Technology, 48: 3203-3209. https://doi.org/10.1021/es405337g
  • 14. Chen, Y., Jia, R., Yang, S., 2015. Distribution and source of polycyclic aromatic hydrocarbons (PAHs) in water dissolved phase, suspended particulate matter and sediment from Weihe River in northwest China. International Journal of Environmental Research and Public Health, 12: 14148-14163. https://doi.org/https://doi.org/10.3390/ijerph121114148
  • 15. Chiedozie, C., Aralu, Patrice, A.C., Okoye, Hillary, O., Abugu, Victor, C., Eze., 2022. Pollution and water quality index of boreholes within unlined waste dumpsite in Nnewi, Nigeria. Discover Water, 2: 14. https://doi.org/10.1007/s43832-022-00023-9
  • 16. Christensen, T.H., Kjeldsen, P., Bjerg, P.L., Jensen, D.L., Christensen, J.B., Baun, A., Albrechtsen, H.J., Heron, G., 2000. Biogeochemistry of landfill leachate plumes. Applied Geochemistry, 16: 659-718. https://doi.org/10.1016/S0883-2927(00)00082-2
  • 17. Dąbrowska, D., Witkowski, A.J., 2022. Groundwater and human health risk assessment in the vicinity of a municipal waste landfill in Tychy, Poland. Applied Sciences, 12: 12898. https://doi.org/10.3390/app122412898
  • 18. Dąbrowska, D., Witkowski, A., Sołtysiak, M., 2018. Application of pollution indices for the assessment of the negative impact of a municipal landfill on groundwater (Tychy, southern Poland). Geological Quarterly, 62 (3): 496-508. https://doi.org/10.7306/gq.1420
  • 19. Deng, W.J., Li, N., Wu, R., Richard, W.K.S., Wang, Z., Ho, W., 2018. Phosphorus flame retardants and Bisphenol A in indoor dust and PM2.5 in kindergartens and primary schools in Hong Kong. Environmental Pollution, 235: 365e371. https://doi.org/10.1016/j.envpol.2017.12.093
  • 20. Dobaradaran, S., Schmidt, T.C., Lorenzo-Parodi, N., Kaziur-Cegla, W., Jochmann, M.A, Nabipour, I., Lutze, H.V., Telgheder, U., 2020. Polycyclic aromatic hydrocarbons (PAHs) leachates from cigarette butts into water. Environmental Pollution,259: 113916. https://doi.org/10.1016/j.envpol.2020.113916
  • 21. Dreij, K., Lundin, L., LeBihanic, F., Lundstedt, S., 2020. Polycyclic aromatic compounds in urban soils of Stockholm City: Occurrence, sources and human health risk assessment. Environmental Research, 182: 108989. https://doi.org/10.1016/j.envres.2019.108989
  • 22. Fabiańska, M., Kozielska, B., Konieczyński, J., 2017. Differences in the occurrence of polycyclic aromatic hydrocarbons and geochemical markers in the dust emitted from various coal-fired boilers. Energy Fuels, 31: 2585-2595. https://doi.org/https://doi.org/10.1021/acs.energyfuels.6b03030
  • 23. Fabiańska, J.M., Kozielska, B., Konieczyński, J., Bielaczyc, P., 2019. Occurrence of organic phosphates in particulate matter of the vehicle exhausts and outdoor environment, a case study. Environmental Pollution, 244: 351e360. https://doi.org/10.1016/j.envpol.2018.10.060
  • 24. Gounaris, V., Anderson, P.R., Holsen, T.M., 1993. Characteristics and environmental significance of colloids in landfill leachate. Environmental Science and Technology, 27: 1381-1387. https://doi.org/10.1021/es00044a013
  • 25. He, M.J., Lu, J.F., Ma, J.Y., Wang, H., Du, X.F., 2018. Organophosphate esters and phthalate esters in human hair from rural and urban areas, Chongqing, China: concentrations, composition profiles and sources in comparison to street dust. Environmental Pollution, 237: 143e153. https://doi.org/10.1016/j.envpol.2018.02.040
  • 26. Hennerbert, P., Lambert, S., Fouillen, F., Charrasse, B., 2014. Assessing the environmental impact of shredded tires as embankment fill material. Canadian Geotechnical Journal, 51: 469-478. https://doi.org/10.1139/cgj-2013-0194
  • 27. Hisamuddin, N.H., Jalaludin, J., Bakar, S.A., Latif, M.T., 2022. The influence of environmental polycyclic aromatic hydrocarbons (PAHs) exposure on DNA damage among school children in urban traffic area, Malaysia. Intermational Journal of Environmental Research and Public Health, 19: 2193. https://doi.org/10.3390/ijerph19042193
  • 28. Hoffman, K., Butt, C.M., Webster, T.F., Preston, E.V., Hammel, S.C., Makey, C., Lorenzo, A.M., Cooper, E.M., Carignan, C., Meeker, J.D., Hauser, R., Soubry, A., Murphy, S.K., Price, T.M., Hoyo, C., Mendelsohn, E., Congleton, J., Daniels, J.L., Stapleton, H.M., 2017. Temporal trends in exposure to organophosphate flame retardants in the United States. Environmental Science and Technology Letters, 4: 112-118. https://doi.org/10.1021/acs.estlett.6b00475
  • 29. Hsin-Chieh, K., Yen, Kung, H., Bo, Wun, H., Cheruiyot, N.K., Guo, Ping, Ch., 2022. An overview: organophosphate flame retardants in the atmosphere. Aerosol and Air Quality Research, 22: 220148. https://doi.org/10.4209/aaqr.220148
  • 30. Idowu, O., Semple, K.T., Ramadass, K., O'Connor, W., Hansbro, P., Thavamani, P., 2019. Beyond the obvious: environmental health implications of polar polycyclic aromatic hydrocarbons. Environment International, 123: 543-557. https://doi.org/10.1016/j.envint.2018.12.051
  • 31. Ishikawa, S., Taketomi, M., Shinohara, R., 1985. Determination of trialkyl and triaryl phosphates in environmental samples. Water Research, 19: 119-125. https://doi.org/10.1016/0043-1354(85)90332-X
  • 32. Jiries, A., Rimawi, O., Lintelmann, J., Batarseh, M., 2005. Polycyclic aromatic hydrocarbons (PAH) in top soil, leachate and groundwater from Ruseifa solid waste landfill, Jordan. International Journal of Environment and Pollution, 23: 179-188. https://doi.org/10.1504/IJEP.2005.006859
  • 33. Kapsi, M., Tsoutsi, Ch., Albanis, T., 2020. Simple analytical methodology based on solid phase extraction for monitoring pesticide residues in natural waters. MethodsX, 7: 101011. https://doi.org/10.1016/j.mex.2020.101011
  • 34. Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A., Christensen, T., 2002. Present and long-term composition of MSW landfill leachate: a review. Critical Reviews in Environmental Science and Technology, 32: 297-336. https://doi.org/10.1080/10643380290813462
  • 35. Kremser, K., Thallner, S., Strbik, D., Spiess, S., Kucera, J., Vaculovic, T., Vsiansky, D., Haberbauer, M., Mandl, M., Guebitz, G., 2021. Leachability of metals from waste incineration residues by iron and sulfur-oxidizing bacteria. Journal of Environmental Management, 280: 111734. https://doi.org/10.1016/j.jenvman.2020.111734
  • 36. Krzebietke, J.S., Mackiewicz-Walec, E., Sienkiewicz, S., Załuski, D., 2020. Effect of manure and mineralfertilisers on the content of light and heavy polycyclicaromatic hydrocarbons in soil. Scientific Reports, 10. https://doi.org/10.1038/s41598-020-61574-2
  • 37. Kumar, D., Alappat, B.J., 2005. Evaluating leachate contamination potential of landfill sites using leachate pollution index. Clean Technologies and Environmental Policy, 7. https://doi.org/10.1007/s10098-004-0269-4
  • 38. Lemieux, C.L., Lynes, K.D., White, P.A., Lundstedt, S., Öberg, L., Lambert, I.B., 2009. Mutagenicity of an aged gasworks soil during bioslurry treatment. Environmental and Molecular Mutagenesis, 50: 404-412. https://doi.org/10.1002/em.20473
  • 39. Li, J., Shang, X., Tanguay, R.L., Dong, Q., Huang, Ch., 2010. Polycyclic aromatic hydrocarbons in water, sediment, soil, and plants of the Aojiang River waterway in Wenzhou, China. Journal of Hazardous Materials 173: 75-81. https://doi.org/10.1016/j.jhazmat.2009.08.050
  • 40. Lundstedt, S., White, P.A., Lemieux, C.L., Lynes, K.D., Lambert, I.B., Öberg, L., 2007. Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. AMBIO, 36: 475-485. https://doi.org/10.1579/0044-7447(2007)36[475:sfatho]2.0.co;2
  • 41. Malakahmad, A., Xin, Law, M., Ng, Ka-Wy, Sabariah, Abd, Manan, T., 2016. The fate and toxicity assessment of polycyclic aromatic hydrocarbons (PAHs) in water streams of Malaysia. Procedia Engineering, 148: 806-811. https://doi.org/10.1016/j.proeng.2016.06.572
  • 42. Marklund, A., Andersson, B., Haglund, P., 2003. Screening of organophosphorus compounds and their distribution in various indoor environments. Chemosphere, 53: 1137e1146. https://doi.org/10.1016/S0045-6535(03)00666-0
  • 43. Marklund, A., Andersson, B., Haglund, P., 2005. Traffic as a source of organophosphorus flame retardants and plasticizers in snow. Environmental Science and Technology, 39: 3555-3562. https://doi.org/10.1021/es0482177
  • 44. Mass Spectral Database, 2014. The Wiley Registry of Mass Spectral Data. Wiley, New York.
  • 45. Meyer, J., Bester, K., 2004. Organophosphate flame retardants and plasticisers in wastewater treatment plants. Journal of Environmental Monitoring, 6: 599-605. https://doi.org/10.1039/b403206c
  • 46. Miller, J.S., Olejnik, D., 2001. Photolysis of polycylic aromatic hydrocarbons in water. Water Resources, 35: 233-243. https://doi.org/10.1016/S0043-1354(00)00230-X
  • 47. Mojiri, A., Zhou, J.L., Ohashi, A., Ozaki, N., Kindaichi, T., 2019. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Science of the Total Environment, 696: 133971. https://doi.org/10.1016/j.scitotenv.2019.133971
  • 48. Moqsud, M.A., Rahman, M.H., 2004. Biochemical quality of compost from kitchen garbage in Bangladesh. Environmental Informalities Archives, 2: 635-640.
  • 49. Mor, S., Ravindra, K., Dahiya, R.P., Chandra, A., 2006. Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environmental Monitoring Assessment, 118: 435-456. https://doi.org/10.1007/s10661-006-1505-7
  • 50. Mzoughi, N., Chouba, L., 2011. Distribution and partitioning of aliphatic hydrocarbons and polycyclic aromatic hydrocarbons between water, suspended particulate matter, and sediment in harbours of the West coastal of the Gulf of Tunis (Tunisia). Journal of Environmental Monitoring, 13: 689-698. https://doi.org/10.1039/C0EM00616E
  • 51. Nasr, I.N., Arief, M.H., AbdelAleem, A.H., Malhat, F.M., 2010. Polycyclic aromatic hydrocarbons (PAHs) in aquatic environment at El Menofiya Governorate, Egypt. Journal of Applied Sciences Research, 6: 13-21.
  • 52. Nisbet, I.C.T., LaGoy, P.K., 1992. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16: 290-300. https://doi.org/10.1016/0273-2300(92)90009-X
  • 53. Ogunbisi, M.A., Olujimi, O.O., Sojinu, O.S., Xian, Q., Arowolo, T.A., 2022. Occurrence, source and risk assessment of polycyclic aromatic hydrocarbons in Ogun River and Lagos Lagoon, Southwest, Nigeria. International Journal of Environmental Science and Technology, 20: 3. https://doi.org/10.1007/s13762-022-04237-1
  • 54. Öman, C.B., Junestedt, C., 2008.Chemical characterization of landfill leachates - 400 parameters and compounds. Waste Management, 28: 1876-1891. https://doi.org/10.1016/j.wasman.2007.06.018
  • 55. Paxeus, N., 2000. Organic compounds in municipal landfill leachates. Water Science and Technology, 42: 323-333. https://doi.org/10.2166/wst.2000.0585
  • 56. Philp, R.P., 1985. Fossil Fuel Biomarkers. Application and Spectra. Elsevier, Amsterdam. https://doi.org/10.1080/00908318708908703
  • 57. PN-EN 12457-2:2006. Charakteryzowanie odpadów. Wymywanie. Badanie zgodności w odniesieniu do wymywania ziarnistych materiałów odpadowych i osadów (in Polish). Część 2: Jednostopniowe badanie porcjowe przy stosunku cieczy do fazy stałej 10 l/kg w przypadku materiałów o wielkości cząstek poniżej 4 mm (bez redukcji lub z redukcją wielkości).
  • 58. Quevauviller, P., Fouillac, A.M, Grath, J., Ward, R., 2009. Groundwater monitoring. Water Quality Measurements Series, John Willey and Sons, Ltd; 428. https://doi.org/10.1002/9780470749685.ch13
  • 59. Øygard, J., Mage, A., Gjengedal, E., Svane, T., 2005. Effect of an uncontrolled fire and the subsequent fire fight on the chemical composition of landfill leachate. Waste Management, 25: 712-718. https://doi.org/10.1016/j.wasman.2004.11.008
  • 60. Regnery, J., Püttmann, W., Merz, C., Berthold, G., 2011. Occurrence and distribution of organophosphorus flame retardants and plasticizers in anthropogenically affected groundwater. Journal of Environmental Monitoring, 13: 347-354. https://doi.org/10.1039/c0em00419g
  • 61. Rogula-Kozłowska, W., Kozielska, B., Klejnowski, K., 2013. Concentration, origin and health hazard from fine particle-bound PAH at three characteristic sites in Southern Poland. Bulletin of Environmental Contamination and Toxicology, 91: 349-355. https://doi.org/10.1007/s00128-013-1060-1
  • 62. Roy, D., Ahn, S.H., Lee, T. K., Seo, Y.-C., Park, J., 2020. Cancer and non-cancer risk associated with PM10-bound metals in subways. Transportation Research Part D: Transport and Environment, 89: 102618. https://doi.org/10.1016/j.trd.2020.102618
  • 63. Rykała, W., Fabiańska, M.J., Dąbrowska, D., 2022. The influence of a fire at an illegal landfill in Southern Poland on the formation of toxic compounds and their impact on the natural environment. International Journal of Environmental Research and Public Health, 19: 13613. https://doi.org/10.3390/ijerph192013613
  • 64. San Miguel, V., Peinado, C., Catalina, F., Abrusci, C., 2009. Bioremediation of naphthalene in water by Sphingomonas paucimobilis using new biodegradable surfac tants based on poly (e-caprolactone). International Biodeterioration and Biodegradation, 63: 217-223. https://doi.org/10.1016/j.ibiod.2008.09.005
  • 65. Sayyah, M., Azooz, R., 2011. Electrosynthesis and characterization of adherent poly (2-aminobenzothiazole) on Pt-electrode from acidic solution. Arabian Journal of Chemistry, 9: S576-S586. https://doi.org/10.1016/j.arabjc.2011.06.031
  • 66. Schlanges, I., Meyer, D., Palm, W.U., Ruck, W., 2008. Identification, quantification and distribution of PAC-metabolites, heterocyclic PAC and substituted PAC in groundwater samples of tarcontaminated sites from Germany. Polycyclic Aromatic Compounds, 28: 320-338. https://doi.org/10.1080/10406630802377807
  • 67. Sheldon, S., Hites, R., 1978. Organic compounds in the Delaware River. En vironmental Science and Technology, 12: 1188. https://doi.org/10.1021/es60146a006
  • 68. Sicre, M.A., Marty, J.C., Saliot, A., Aparicio, X., Grimalt, J., Albaiges, J., 1987. Aliphatic and aromatic hydrocarbons in the Mediterranean aerosol. International Journal of Environmental Analytical Chemistry, 29: 73-94. https://doi.org/10.1080/03067318708078412
  • 69. Suterio, N.G., Carmo, S.N., Budziak, D., Merib, J., Carasek, E., 2018. Use of a natural sorbent as alternative solid-phase microextraction coating for the determination of polycyclic aromatic hydrocarbons in water samples by gas chromatography-mass spectrometry. Journal of the Brazilian Chemical Society, 29: 2417-2425. https://doi.org/10.21577/0103-5053.20180119
  • 70. Świetlik, R., Kowalczyk, D., Dojlido, J., 2002. Influence of selected physicochemical factors on the degradation of PAHs in water. Polish Journal of Environmental Studies, 11: 165-169.
  • 71. Theepharaksapan, S., Chiemchaisri, C., Chiemchairi, W., Yamamoto, K., 2011. Removal of pollutants and reduction of bio-toxicity in a full scale chemical coagulation and reverse osmosis leachate treatment system. Bioresource Technology, 102: 5381-5388. https://doi.org/10.1016/j.biortech.2010.11.091
  • 72. Thomas, S.D., Li, Q.X., 2000. Immunoaffinity chromatography for analysis of polycyclic aromatic hydrocarbons in corals. Environmental Science and Technology, 34: 2649. https://doi.org/10.1021/es991069d
  • 73. Wilcke, W., Bandowe, B.A.M., Lueso, M.G., Ruppenthal, M., del Valle, H., Oelmann, Y., 2014. Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs, azaarenes) in soils along a climosequence in Argentina. Science of the Total Environment, 473-474: 317-325. https://doi.org/10.1016/j.scitotenv.2013.12.037
  • 74. Witkowski, A.J., Dąbrowska, D., 2017. Diagnosis of the legal and organizational status of groundwater monitoring in Poland. Przegląd Geologiczny, 65: 1393-1397.
  • 75. Wu, Y., Luo, Y., Zou, D., Ni, J., Liu, W., Teng, Y., Li, Z., 2008. Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: degradation and microbial community analysis. Biodegradation, 19: 247-257. https://doi.org/10.1007/s10532-007-9131-9
  • 76. Zdarta, A., Pacholak, A., Galikowska, M., Smulek, W., Kaczorek, E., 2018. Butylbenzene and tert-Butylbenzene-Sorption on sand particles and biodegradation in the presence of plant natural surfactants. Toxins, 10: 154-196. https://doi.org/10.3390/toxins10090338
  • 77. Zhou, J.L., Fileman, T.W., Evans, S., Donkin, P., Mantoura, R.F.C., Rowland, S.J., 1996. Seasonal distribution of dissolved pesticides and polynuclear aromatic hydrocarbons in the Humber Estuary and Humber coastal zone. Marine Pollution Bulletin, 32: 599-608. https://doi.org/10.1016/0025-326X(96)00014-8
  • 78. Zhou, J.L., Hong, H., Zhang, Z., Maskaoui, K., Chen, W., 2000. Multi-phase distribution of organic micropollutants in Xiamen Harbour, China. Water Research, 34: 2132-2150. https://doi.org/10.1016/S0043-1354(99)00360-7
  • 79. Zhou, J.L., Maskaoui, K., 2003. Distribution of polycyclic aromatic hydrocarbons in water and surface sediments from Daya Bay, China. Environmental Pollution, 121: 269-281. https://doi.org/10.1016/S0269-7491(02)00215-4
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2afccf4d-dad9-4f1f-af99-c0051f64620e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.