Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, iss. 7 | 80--93
Tytuł artykułu

Investigation into the Feasibility of Using Solar-Powered Household Air Conditioner in the Kurdistan Region of Iraq

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The extensive use of fossil fuels contributes to global warming and the release of toxic metals into the environment, resulting in climate change in some regions. It has been estimated that cooling buildings accounts for about 20% of global electricity consumption and this figure continues to grow. The purpose of the current study is to evaluate the feasibility of using an air conditioning unit for cooling a residential building, powered by solar energy in the conditions of Iraqi Kurdistan. Such an assessment is required for the sustainable development of the region. The study location is Erbil city in Iraq (latitude: 36.1911 °N, longitude: 44.00917 °E). The PVsyst software tool was used for modeling because it is characterized by great versatility in the field of modeling solar energy systems. The specified solar panel power (kW) was a constant parameter. Variable parameters were height of solar panels, albedo reflector, tracker system. In the current study, three simulations were performed in which the variable parameter was height and four simulations in which the variable parameter was the solar panel› angle. An average of 3.5 kWh was produced throughout the day, and an average of 3.3 kWh was produced during working hours. Only 0.2 kWh was produced outside of working hours, meaning that almost all of the electricity produced is available during working hours. This is useful in countries without high feed-in tariffs where only a small feed into the grid is needed. Also with the lowest calculated values (of all the options under study) the energy produced is 2264 kW/h/year or 2.264 MW/h/year (month – January, panel installation height – 0.5 m, inclination – 20°, azimuth – 0°), greenhouse gas emissions of at least 604.3 kg CO2 per year are eliminated. At the same time, an additional measure to increase the efficiency of using a solar panel to power an air conditioner is to place reflective material in which the reflection rate or reflection coefficient is different under the solar panels. However, as mentioned earlier, this is an expensive solution. In the future, it will be beneficial to develop smart control technologies to improve performance and evaluate the impact of a solar air conditioning.
Wydawca

Rocznik
Strony
80--93
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Mechanical and Mechatronics Department, College of Engineering, Salahaddin University, Erbil 44001, Iraq, ramzi.ibraheem@su.edu.krd
Bibliografia
  • 1. Adekanbi M.L., Alaba E. S., John T.J., Tundealao T.D., Banji T.I. 2023. Soiling loss in solar systems: A review of its effect on solar energy efficiency and mitigation techniques. Cleaner Energy Systems, 100094. https://doi.org/10.1016/j.cles.2023.100094
  • 2. Ahmad W., Samara F. 2023. Biohydrogen Production from Waste Materials: Mini-review. Trends in Ecological and Indoor Environment Engineering, 1(1), 16–23. https://doi.org/10.62622/TEIEE.023.1.1.16-23
  • 3. Almonacid F., Rus C., Pérez-Higueras P., Hontoria L. 2011. Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks. Energy, 36(1), 375–384. https://doi.org/10.1016/j.energy.2010.10.028
  • 4. Al-Yasiri Q., Szabó M., Arıcı M. 2022. A review on solar-powered cooling and air-conditioning systems for building applications. Energy Reports, 8, 2888– 2907. https://doi.org/10.1016/j.egyr.2022.01.172
  • 5. Chaichan M.T., Kazem H.A. 2018. Enhancing the performance of solar air-conditioning systems: A review. Renewable and Sustainable Energy Reviews, 81, 2674–2688.
  • 6. Chen Y., Cao Y., Zhang X., Li Z. 2017. Simulation and optimization of photovoltaic-powered air conditioning systems for commercial buildings. Applied Energy, 204, 571–581.
  • 7. Damm W., Heinemann D., Pukrop D. 1995. Power losses in PV arrays due to variations in the IV characteristics of PV modules. In ISES Solar World Congress. Available: https://uol.de/f/5/inst/physik/ag/enmet/publications/solar/conference/1995/Power_Losses_in_PV_Arrays_Due_To_Variations_in_ the_I_V_Characteristics_of_PV_Modules.pdf
  • 8. Dolchinkov N. T. 2024. Natural emergencies and some causes of their occurrence: a review. Trends in Ecological and Indoor Environment Engineering, 2(1), 18–27. https://dx.doi.org/10.62622/TEIEE.024.2.1.18-27
  • 9. González-Peña D., García-Ruiz I., Díez-Mediavilla M., Dieste-Velasco M.I., Alonso-Tristán C. 2021. Photovoltaic prediction software: evaluation with real data from northern Spain. Applied Sciences, 11(11), 5025.
  • 10. Grinzovskyy A., Kuzminska O., Karvatsky I. 2017. Hyperhomocysteinemia as a Predictor of Cardiovascular Diseases in Lead-Exposed Subjects. Georgian Medical News, 271, 86–90.
  • 11. Hasan A., Mujahid M. 2020. Recent developments in solar-assisted absorption cooling systems: A review. Renewable and Sustainable Energy Reviews, 120, 109651.
  • 12. He W., Zhu H., Wang Z. 2023. Comparative performance analysis of solar air cooling systems using different types of solar collectors. Energy Conversion and Management, 272, 113604.
  • 13. Hulai T., Kuzminska O., Omelchuk S., Hrynzovskyi A., Trunina T., Blagaia A. 2022. Нygienic assessment of the influence of pesticides on the fatty composition of sunflower seed lipids. Wiadomości Lekarskie, LXXV-4(1). https://doi.org/10.36740/WLek202204118
  • 14. IEA. 2018. The Future of Cooling, IEA, Paris https://www.iea.org/reports/the-future-of-cooling, Licence: CC BY 4.0
  • 15. Jahangiri S., Alhamzawi A., Esfanjani P., Valipour M.S., Akbarzadeh S. 2024. Impact of double-axis tracking on thermal performance of the linear Fresnel Collector: An experimental study. Solar Energy, 272, 112483. https://doi.org/10.1016/j.solener.2024.112483
  • 16. Kapsalis V., Founti M. 2019. Solar air conditioning systems: A review of opportunities for energy and carbon reductions, enhanced sustainability, and improved user comfort. Renewable and Sustainable Energy Reviews, 107, 317–331.
  • 17. Kazulis V., Vigants H., Veidenbergs I., Blumberga D. 2018. Biomass and natural gas co-firing–evaluation of GHG emissions. Energy Procedia, 147, 558–565.
  • 18. Khan, T., Ahmad, I., Wang, Y., Salam, M., Shahzadi, A., Batool, M. 2022. Comparison approach for wind resource assessment to determine the most precise approach. Energy & Environment, 0958305X221135981. https://doi.org/10.1177/0958305X2211359
  • 19. Li H., Zhang H., Zou B., Peng J. 2024. A generalized study of photovoltaic driven air conditioning potential in cooling season in mainland China. Renewable Energy, 223, 120048.8. https://doi.org/10.1016/j. renene.2024.120048
  • 20. Li S., Li Y., Jiang Y., Wang R., Zhang Y. 2018. Performance analysis of a photovoltaic-powered air conditioning system using dynamic simulation. Energy Conversion and Management, 170, 229–240.
  • 21. Lu W., Ajay P. 2024. Solar PV tracking system using arithmetic optimization with dual axis and sensor. Measurement: Sensors, 101089. https://doi.org/10.1016/j.measen.2024.101089
  • 22. Milosavljević D.D., Kevkić T.S., Jovanović S.J. 2022. Review and validation of photovoltaic solar simulation tools/software based on case study. Open Physics, 20(1), 431–451.
  • 23. Mohanraj M., Chandrasekar M., Sampath S. 2010. A review of solar-powered absorption cooling systems. Renewable and Sustainable Energy Reviews, 14(8), 1883–1889.
  • 24. Nnamchi S.N., Natukunda F., Wanambwa S., Musiime E.B., Tukamuhebwa R., Wanazusi T., Ogwal E. 2023. Effects of wind speed and tropospheric height on solar power generation: Energy exploration above ground level. Energy Reports, 9, 5166–5182. https://doi.org/10.1016/j.egyr.2023.04.269
  • 25. Olmuş U., Güzelel Y. E., Büyükalaca O. 2023. Seasonal analysis of a desiccant air-conditioning system supported by water-cooled PV/T units. Energy and Buildings, 291, 113101. https://doi.org/10.1016/j.enbuild.2023.113101
  • 26. Omoyajowo K.O., Adewunmi M.A., Omoyajowo K.A., Ogunyebi A.L., Njoku K.L., Makengo B.M., Babalola О.О., Ojo-Emmanuel G. 2024. Transitioning to a Сlimate-Resilient Society: Empirical Evidence on What Drives the Adoption of Green Computing Policies in Nigerian Organisations. Trends in Ecological and Indoor Environment Engineering, 2(1), 28–34. https://doi.org/10.62622/TEIEE.024.2.1.28-34
  • 27. Ramanan C.J., Lim K.H., Kurnia J.C., Roy S., Bora B.J., Medhi B.J. 2024. Design study on the parameters influencing the performance of floating solar PV. Renewable Energy, 223, 120064. https://doi.org/10.1016/j.renene.2024.120064
  • 28. Salmi M., Baci A.B., Inc M., Menni Y., Lorenzini G., Al-Douri Y. 2022. Desing and simulation of an autonomous 12.6 kW solar plant in the Algeria’s M’sila region using PVsyst software. Optik, 262, 169294.
  • 29. Sulaiman A.Y., Obasi G.I., Chang R., Moghaieb H.S., Mondol J.D., Smyth M., Kamkari B., Hewitt N.J. 2023. A solar powered off-grid air conditioning system with natural refrigerant for residential buildings: A theoretical and experimental evaluation. Cleaner Energy Systems, 5, 100077. https://doi.org/10.1016/j.cles.2023.100077
  • 30. Wang R., Dai Y. 2017. Recent advances in solar cooling technologies: A review. Applied Energy, 187, 595–606.
  • 31. Wu X., Wang R., Wang L. 2020. Performance analysis of solar-assisted absorption air conditioning system. Energy Conversion and Management, 221, 113134.
  • 32. Zahorodniuk K., Voitsekhovsky V., Korobochka A., Hrynzovskyi A., Averyanov V. 2019. Development of modernized paper filtering materials for water purification, assessment of their properties. Eastern-European Journal of Enterprise Technologies, 1(10–97), 6–13. https://doi.org/10.15587/1729-4061.2019.156534
  • 33. Zhang, Y., Yang, H., Li, Y., Wang, R. 2019. Simulation and optimization of photovoltaic-powered air conditioning systems for off-grid applications. Energy Conversion and Management, 195, 1206-1219.
  • 34. Zhao Y., Lu L., Li X. 2021. Energy and exergy analysis of solar adsorption air conditioning system. Energy, 231, 120957.
  • 35. Zhao Y., Zhao F., Li H., Li Y. 2019. Optimal design and performance analysis of photovoltaic-powered air conditioning systems. Applied Energy, 238, 1615–1625.
  • 36. Zhu H., Wang Z., Zhou D. 2022. Optimal control strategy for solar-assisted ground source heat pump system in air conditioning of buildings. Energy Conversion and Management, 248, 114337.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2aef0b90-d0c2-4502-8f94-5c8f74e2fd92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.