Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 13 | 45--48
Tytuł artykułu

Application of machine learning to help AI to play Hearthstone

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Communication Papers of the 2017 Federated Conference on Computer Science and Information Systems
Języki publikacji
EN
Abstrakty
EN
This paper presents a solution, which was developed as a part of the competition AAIA'17 Data Mining Challenge: Helping AI to Play Hearthstone. The goal of the competition was to predict the probability of AI player win in different intra-game states of Hearthstone game (online computer game with cards). This solution got the third place at the final leaderboard. The paper describes models and local validation approach, which was very useful for models development without overfitting.
Słowa kluczowe
Wydawca

Rocznik
Tom
Strony
45--48
Opis fizyczny
Bibliogr. 13 poz., tab.
Bibliografia
  • 1. Hearthstone: Heroes of Warcraft. [Online]. Available: http://eu.battle.net/hearthstone/en/
  • 2. Blizzard Entertainment. [Online]. Available: http://www.blizzard.com
  • 3. Hearthstone wiki. [Online]. Available: http://hearthstone.gamepedia.com
  • 4. International Symposium Advances in Artificial Intelligence and Applications. [Online]. Available: https://fedcsis.org/2017/aaia
  • 5. AAIA'17 Data Mining Challenge. [Online]. Available: https://knowledgepit.fedcsis.org/contest/view.php?id=120
  • 6. Microsoft LightGBM lidrary. [Online]. Available: https://github.com/Microsoft/LightGBM
  • 7. MXNet library. [Online]. Available: http://mxnet.io
  • 8. data.table library. [Online]. Available: http://r-datatable.com
  • 9. hearthstonejson.com. [Online]. Available: https://api.hearthstonejson.com/v1/18792/enUS/cards.json
  • 10. Jerome H. Friedman, “Greedy function approximation: A gradient boosting machine.” Ann. Statist. 29 (2001), no. 5, 1189--1232. http://dx.doi.org/10.1214/aos/1013203451 [Online].Available: https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
  • 11. Tianqi Chen, Carlos Guestrin, “XGBoost: A Scalable Tree Boosting System” KDD ’16, August 13-17, 2016, San Francisco, CA, USA http://dx.doi.org/10.1145/2939672.2939785 [Online]. Available: https://arxiv.org/abs/1603.02754
  • 12. N.Srivastava, G.E.Hinton, A.Krizhevsky, I.Sutskever, R.Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting” Journal of Machine Learning Research 15 (1). 1929-1958 [Online]. Available: http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
  • 13. xgboost library. [Online]. Available: https://github.com/dmlc/xgboost
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2ae6e616-5e34-475f-85ad-f7033e430df0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.