Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 21, no. 4 | 39--53
Tytuł artykułu

Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current work develops a size-dependent model to provide a comprehensive analysis of static stability in doubly curved micro-panels resting on an elastic foundation. The doubly curved panel is made of advanced composites which reinforced with carbon-based materials. A seven-unknown shear deformation theory in curvilinear coordinate is combined with a non-classical approach to obtain a suitable model to get an accurate result for mechanical performance of micro-size shells. To perform this aim, a virtual work of Hamilton statement is developed and then an analytical technique on the basis of double-Fourier series is implemented for the microshell with fully simply supported conditions in edges. Results show that, CNTs reinforced composite curved shells exhibit a hardening response under buckling. It is also showed that the greatest critical buckling load of the microshell is observed for the shell with spherical panel followed by elliptical, cylindrical, and hyperbolic panels, respectively. Moreover, change of CNTs weight fraction can significantly alter the static stability characteristics of CNTs reinforced composite curved size-dependent shells.
Wydawca

Rocznik
Strony
39--53
Opis fizyczny
Bibliogr. 41 poz., wykr.
Twórcy
autor
  • Xinjiang University, Urumqi 830000, Xinjiang, China, pengyou0991@163.com
  • Xinjiang Communication Construction Co. Ltd. (XCCG), Urumqi 830000, Xinjiang, China
  • Chengdu University of Technology, Chengdu 610000, Sichuan, China
  • Transpotation Industry Highway Maintenance Collaborative Innovation Platform Under Complicated Conditions of Western China, Urumqi 830000, Xinjiang, China
  • Western Sub-Alliance of Zhongguancun Zhongke Highway Maintenance Technology Innovation Alliance, Urumqi 830000, Xinjiang, China
  • Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran, behrouz.karami@miau.ac.ir
  • YFL (Yonsei Frontier Lab), Yonsei University, Seoul, Korea, tou_abdel@yahoo.com
  • Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria
Bibliografia
  • [1] Harris PJ. Carbon nanotubes and related structures: new materials for the twenty-first century. American Association of Physics Teachers; 2004.
  • [2] Qian D, Wagner A, Gregory J, Liu WK, Yu M-F, Ruoff RS. Mechanics of carbon nanotubes. Appl Mech Rev. 2002;55:495–533.
  • [3] Pal G, Kumar S. Modeling of carbon nanotubes and carbon nanotube–polymer composites. Prog Aerosp Sci. 2016;80:33–58.
  • [4] Tüfekci M, Durak SG, Pir I, Acar TO, Demirkol GT, Tüfekci N. Manufacturing, characterisation and mechanical analysis of polyacrylonitrile membranes. Polymers. 2020;12:2378.
  • [5] Tüfekci M, Genel ÖE, Tatar A, Tüfekci E. Dynamic analysis of composite wind turbine blades as beams: an analytical and numerical study. Vibration. 2021;4:1–15.
  • [6] Chen S-X, Sahmani S, Safaei B. Size-dependent nonlinear bending behavior of porous FGM quasi-3D microplates with a central cutout based on nonlocal strain gradient isogeometric finite element modelling. Eng Comput. 2021;37:1657–78.
  • [7] Liew K, Lei Z, Zhang L. Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Campos Struct. 2015;120:90–7.
  • [8] Shen H-S. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos Struct. 2009;91:9–19.
  • [9] Shen H-S. Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells. Compos B Eng. 2012;43:1030–8.
  • [10] Lei Z, Liew K, Yu J. Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment. Compos Struct. 2013;106:128–38.
  • [11] Liu L, Liu F, Zhao J. Curved carbon nanotubes: From unique geometries to novel properties and peculiar applications. Nano Res. 2014;7:626–57.
  • [12] Moradi-Dastjerdi R, Foroutan M, Pourasghar A, Sotoudeh-Bahreini R. Static analysis of functionally graded carbon nanotube-reinforced composite cylinders by a mesh-free method. J Reiff Plast Compos. 2013;32:593–601.
  • [13] Ansari R, Pourashraf T, Gholami R, Shahabodini A. Analytical solution for nonlinear postbuckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers. Compos B Eng. 2016;90:267–77.
  • [14] Zghal S, Frikha A, Dammak F. Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Appl Math Model. 2018;53:132–55.
  • [15] Mehar K, Panda SK. Nonlinear deformation and stress responsem of a graded carbon nanotube sandwich plate structure under thermoelastic loading. Acta Mech. 2020;231:1105–23.
  • [16] Zghal S, Frikha A, Dammak F. Static analysis of functionally graded carbon nanotube-reinforced plate and shell structures. Compos Struct. 2017;176:1107–23.
  • [17] Zghal S, Frikha A, Dammak F. Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Compos B Eng. 2018;150:165–83.
  • [18] Pouresmaeeli S, Fazelzadeh S. Frequency analysis of doubly curved functionally graded carbon nanotube-reinforced composite panels. Acta Mech. 2016;227:2765–94.
  • [19] Liu X, Karami B, Shahsavari D, Civalek Ö. Elastic wave characteristics in damped laminated composite nano-scaled shells with different panel shapes. Compos Struct. 2021;267:113924.
  • [20] Phung-Van P, Lieu QX, Nguyen-Xuan H, Wahab MA. Size-dependent isogeometric analysis of functionally graded karbon nanotube-reinforced composite nanoplates. Compos Struct. 2017;166:120–35.
  • [21] Thai CH, Tran T, Phung-Van P. A size-dependent moving Kriging meshfree model for deformation and free vibration analysis of functionally graded carbon nanotube-reinforced composite nanoplates. Eng Anal Boundary Elem. 2020;115:52–63.
  • [22] Talebizadehsardari P, Eyvazian A, Asmael M, Karami B, Shahsavari D, Mahani RB. Static bending analysis of functionally graded polymer composite curved beams reinforced with carbon nanotubes. Thin-Walled Struct. 2020;157:107139.
  • [23] Zeighampour H, Beni YT. Size dependent analysis of wave propagation in functionally graded composite cylindrical microshell reinforced by carbon nanotube. Compos Struct. 2017;179:124–31.
  • [24] Daikh AA, Drai A, Houari MSA, Eltaher MA. Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes. Steel Compos Struct. 2020;36:643–56.
  • [25] Karami B, Janghorban M, Shahsavari D, Dimitri R, Tornabene F. Nonlocal buckling analysis of composite curved beams reinforced with functionally graded carbon nanotubes. Molecules. 2019;24:2750.
  • [26] Wattanasakulpong N, Ungbhakorn V. Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comput Mater Sci. 2013;71:201–8.
  • [27] Tung HV. Thermal buckling and postbuckling behavior of functionally graded carbon-nanotube-reinforced composite plater resting on elastic foundations with tangential-edge restraints. J Therm Stresses. 2017;40:641–63.
  • [28] Karami B, Shahsavari D, Janghorban M. A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates. Aerosp Sci Technol. 2018;82:499–512.
  • [29] Schaap IA, Carrasco C, de Pablo PJ, MacKintosh FC, Schmidt CF. Elastic response, buckling, and instability of microtubules under radial indentation. Biophys J. 2006;91:1521–31.
  • [30] Khdeir A, Reddy J. Free vibrations of laminated composite plates using second-order shear deformation theory. Comput Struct. 1999;71:617–26.
  • [31] Karami B, Janghorban M, Tounsi A. Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Struct. 2018;129:251–64.
  • [32] Li X, Gao H, Scrivens WA, Fei D, Xu X, Sutton MA, Reynolds AP, Myrick ML. Reinforcing mechanisms of single-walled carbon nanotube-reinforced polymer composites. J Nanosci Nanotechnol. 2007;7:2309–17.
  • [33] Esawi AM, Farag MM. Carbon nanotube reinforced composites: potential and current challenges. Mater Des. 2007;28:2394–401.
  • [34] Librescu L, Oh S-Y, Song O. Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability. J Therm Stresses. 2005;28:649–712.
  • [35] Han Y, Elliott J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci. 2007;39:315–23.
  • [36] Aifantis EC. On the role of gradients in the localization of deformation and fracture. Int J Eng Sci. 1992;30:1279–99.
  • [37] Askes H, Aifantis EC. Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct. 2011;48:1962–90.
  • [38] Mohammadi M, Saidi AR, Jomehzadeh E. Levy solution for buckling analysis of functionally graded rectangular plates. Appl Compos Mater. 2010;17:81–93.
  • [39] Karami B, Janghorban M, Tounsi A. Galerkin’s approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Eng Comput. 2018;35:1297–316.
  • [40] Karami B, Janghorban M. On the mechanics of functionally graded nanoshells. Internat J Eng Sci. 2020;153:103309.
  • [41] Zhang C-L, Shen H-S. Temperature-dependent elastic properties of single-walled carbon nanotubes: prediction from molecular dynamics simulation. Appl Phys Lett. 2006;89:081904.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2ac7357b-a7bb-46e2-b489-95488a601c28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.