Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 25 | 239--242
Tytuł artykułu

Optimized Stochastic Approach for Integral Equations

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (16 ; 02-05.09.2021 ; online)
Języki publikacji
EN
Abstrakty
EN
An optimized Monte Carlo approach (OPTIMIZED MC) for a Fredholm integral equations of the second kind is presented and discussed in the present paper. Numerical examples and results are discussed and MC algorithms with various initial and transition probabilities are compared.
Wydawca

Rocznik
Tom
Strony
239--242
Opis fizyczny
Bibliogr. 7 poz., wz., tab., wykr.
Twórcy
  • Bulgarian Academy of Sciences, Institute of Mathematics and Informatics ul. G. Bonchev 8, 1113 Sofia, Bulgaria, vtodorov@math.bas.bg
  • Bulgarian Academy of Sciences, Institute of Information and CommunicationTechnologies ul. G. Bonchev 25 A, 1113 Sofia, Bulgaria
  • Bulgarian Academy of Sciences, Institute of Information and CommunicationTechnologies ul. G. Bonchev 25 A, 1113 Sofia, Bulgaria, stefka@parallel.bas.bg
autor
  • Bulgarian Academy of Sciences, Institute of Information and CommunicationTechnologies ul. G. Bonchev 25 A, 1113 Sofia, Bulgaria, ivdimov@bas.bg
  • Bulgarian Academy of Sciences, Institute of Information and CommunicationTechnologies ul. G. Bonchev 25 A, 1113 Sofia, Bulgaria, rayna@parallel.bas.bg
Bibliografia
  • 1. I. Dimov, Monte Carlo Methods for Applied Scientists, New Jersey, London, Singapore, World Scientific, 2008, 291p.
  • 2. R. Georgieva, PhD Thesis: Computational complexity of Monte Carlo algorithms for multidimensional integrals and integral equations, Sofia, 2003
  • 3. I. Dimov, E. Atanassov, What Monte Carlo models can do and cannot do efficiently?, Applied Mathematical Modelling 32(2007) 1477–1500.
  • 4. J.H. Curtiss. Monte Carlo Methods for The Iteration of Linear Operators. J. Math. Phys., 32 209–232, (1954).
  • 5. A. Doucet, A.M. Johansen, V.B. Tadic. On solving integral equations using Markov chain Monte Carlo methods. Applied Mathematics and Computations, 216 2869–2880, (2010).
  • 6. I. Sobol. Numerical methods Monte Carlo. Nauka, Moscow, 1973.
  • 7. S.L. Zaharieva, I. Radoslavov Georgiev, V.A. Mutkov and Y. Branimirov Neikov, "Arima Approach For Forecasting Temperature In A Residential Premises Part 2, "2021 20th International Symposium Infoteh-jahorina (infoteh), 2021, pp.1-5.
Uwagi
1. Track 1: Artificial Intelligence in Applications
2. Session: 14th International Workshop on Computational Optimization
3. Short Paper
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2ab3592e-ab4c-475c-a37b-46acc68f2155
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.