Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | No. 64 (1) | 160--165
Tytuł artykułu

Defining a single set of calibration parameters and prestorm bathymetry in the modeling of volumetric changes on the southern Baltic Sea dune coast

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The studies described herein aimed to estimate the accuracy of determination of the volumetric changes on the dune coast of the southern Baltic Sea through the application of the XBeach numerical model, which is crucial for coastal engineering. In the first phase of the study, the profile (1D) mode of the model was adapted to 19 cross-shore profiles located along the Dziwnów Spit. The model was calibrated with a storm event in 2009 that caused significant changes to dunes and beaches. Cross-shore profiles were measured approximately one and a half months before and after the storm. An evaluation of model performance was made based on the Brier skill score (BSS), the visual match of the profile shape (VMS), the absolute volumetric change error (m3/m) and the relative volumetric change error (%). In this study, parameters related to the asymmetry transport (facua) and the dune erosion algorithm (wetslp) were taken into account. The best results for model calibration on all 19 cross-shore profiles were obtained with facua values ranging from 0.16 to 0.40 and wetslp values from 0.35 to 0.60. The calibration of individual profiles yielded good results, with an average absolute error of approximately 4 m3/m and an average relative error of ca. 20%. The poorest results were collected for the profiles situated near coastal engineering structures, where the average absolute error was 10 m3/m and the relative error was 60%. The possibility of accepting one set of parameter values for all the profiles at once was also investigated. These studies revealed that the application of one set of facua and wetslp values for all profiles simultaneously resulted in a relative volumetric change error of ca. 25% on average, with the maximum of about 40%. Due to the difficulty of collecting data just before and after the storm event, complex studies using all available bathymetric data were performed. Using a joint dataset composed of prestorm topography recorded before that storm and bathymetry from different years, a simulation of the 2009 storm event was carried out. The studies revealed that the prestorm bathymetry and the randomness of the selection of calibration parameters have similar effects on the accuracy of volumetric changes. Moreover, the impact of the nearshore bathymetry (to a depth of 2 m) on modeling the volumetric changes in the terrestrial part of the shore is evident. A change in the sea bottom inclination and a successive change in the nearshore sediment volume can increase the difference between modeled and actual volumetric changes.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Strony
160--165
Opis fizyczny
Bibliogr. 59 poz., tab., wykr.
Twórcy
Bibliografia
  • 1. Armaroli, C., Grottoli, E., Harley, M.D., Ciavola, P., 2013. Beach morphodynamics and types of foredune erosion generated by storms along the Emilia-Romagna coastline, Italy. Geomorphology 199, 22-35. https://doi.org/10.1016/j.geomorph.2013.04.034
  • 2. Barnard, P.L., van Ormondt, M., Erikson, L.H., Eshleman, J., Hapke, C., Ruggiero, P., Adams, P.N., Foxgrover, A.C., 2014. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts. Nat. Hazards 74, 1095-1125. https://doi.org/10.1007/s11069-014-1236-y
  • 3. Bruun, P., 1954. Coast erosion and the development of beach profiles. Beach Erosion Board, U.S. Army Corps of Engineers Technical Memorandum No. 44.
  • 4. Bugajny, N., Furmańczyk, K., 2017. Comparison of Short-Term Changes Caused by Storms along Natural and Protected Sections of the Dziwnów Spit, Southern Baltic Coast. J. Coast. Res. 33, 775-785. https://doi.org/10.2112/JCOASTRES-D-16-00055.1
  • 5. Bugajny, N., Furmańczyk, K., Dudzińska-Nowak, J., 2015. Application of XBeach to model a storm response on a sandy spit at the southern Baltic. Oceanol. Hydrobiol. Stud. 44, 552-562. https://doi.org/10.1515/ohs-2015-0052
  • 6. Bugajny, N., Furmańczyk, K., Dudzińska-Nowak, J., Paplińska-Swerpel, B., 2013. Modelling morphological changes of beach and dune induced by storm on the Southern Baltic coast using XBeach (case study: Dziwnów Spit). J. Coast. Res. 65, 672-677. https://doi.org/10.2112/SI65-114.1
  • 7. Ciavola, P., Ferreira, O., Van Dongeren, A., Van Thiel de Vries, J., Armaroli, C., Harley, M., 2014. Prediction of Storm Impacts on Beach and Dune Systems. In: Quevauviller, P (Ed.), Hydrometeorological Hazards: Interfacing Science and Policy. John Wiley & Sons, Ltd, 227-252.
  • 8. Cieślikiewicz, W., Herman, A., 2001. Modelowanie falowania wiatrowego Morza Bałtyckiego i Zatoki Gdańskiej. Inżynieria Morska i Geotechnika 22 (4), 173-184.
  • 9. Cieślikiewicz, W., Herman, A., 2002. Wave and current modeling over the Baltic Sea. In: Smith, J.M. (Ed.), Proc. 28th Intern. Conf. Coastal Engng Conf., ICCE 2002. World Scientific, Cardiff, 176-187.
  • 10. Dean, R.G., Maurmeyer, E.M., 1983. Models for beach profile re-sponse. In: Komar, P. (Ed.), Handbook of Coastal Processes and Erosion. CRC Press, Boca Raton, 151-165.
  • 11. Dissanayake, P., Brown, J., Karunarathna, H., 2014. Modelling storm-induced beach/dune evolution: Sefton coast, Liverpool Bay, UK. Mar. Geol. 357, 225-242. https://doi.org/10.1016/j.margeo.2014.07.013
  • 12. Dobracki, R., Zachowicz, J., 2005. Mapa Geodynamiczna Polskiej Strefy Brzegowej Bałtyku. Szczecin, Państwowy Instytut Geologiczny. Oddział Pomorski, scale 1:10,000, 2 sheets.
  • 13. Dudzińska-Nowak, J., 2015. Metody ochrony zachodniego wybrzeża Polski i ich wpływ na zmiany brzegu w latach 1938-2011. Wydawnictwo Naukowe Uniwersytetu Szczecińskiego, Szczecin.
  • 14. Dudzińska-Nowak, J., 2006a. Coastline long-term changes of the selected area of the Pomeranian Bay. In: Tubielewicz, A. (Ed.), Coastal Dynamic, Geomorphology and Protection. Gdańsk University of Technology, Gdańsk, 163-170.
  • 15. Dudzińska-Nowak, J., 2006b. Wpływ metod ochrony brzegu morskiego na zmiany położenia linii podstawy wydmy na wybranym przykładzie. In: Koźmiński, Cz., Dutkowski, M., Radziejewska, T. (Eds.), Człowiek i ́srodowisko przyrodnicze Pomorza Zachodniego: III. Środowisko przyrodnicze i problemyspołeczno-ekonomiczne, Szczecin, 91-98.
  • 17. Dudzińska-Nowak, J., Wężyk, P., 2014. Volumetric changes of a soft cliff coast 2008-2012 based on DTM from airborne laser scanning (Wolin Island, southern Baltic Sea). J. Coast. Res. 70, 59-64. https://doi.org/10.2112/si70-011.1
  • 18. Edelman, T., 1972. Dune erosion during storm conditions. In: Proceedings of the 13th Coastal Engineering Conference. ASCE, 1305-1311.
  • 19. Elsayed, S.M., Oumeraci, H., 2017. Breaching of coastal barriers under extreme storm surges and implications for groundwater contamination: Improvement and Extension of the XBeach Model to Account for New Physical Processes. Internal Report no 1073/17, Leichtweiß-Institut for Hydraulic Engineering and Water Resources, TU, Braunschweig.
  • 20. Furmańczyk, K., Andrzejewski, P., Benedyczak, R., Bugajny, N., Cieszyński, Ł., Dudzińska-Nowak, J., Giza, A., Paprotny, D.,Terefenko, P., Zawiślak, T., 2014. Recording of selected effects and hazards caused by current and expected storm events in the Baltic Sea coastal zone. J. Coast. Res. 70, 338-342. https://doi.org/10.2112/SI70-057.1
  • 21. Furmańczyk, K., Dudzińska-Nowak, J., 2009. Effects of extreme storms on coastline changes: A southern Baltic example. J. Coast. Res. 56, 1637-1640.
  • 22. Furmańczyk, K.K., Dudzińska-Nowak, J., Brzezowska, N., Furmańczyk, K.A., Paplińska-Swerpel, B., 2011. Dune erosion as a result of the significant storms at the western Polish coast (Dziwnów Spit example). J. Coast. Res. 64, 756-759.
  • 23. Haerens, P., Ciavola, P., Ferreira, Ó., van Dongeren, A., van Koningsveld, M., Bolle, A., 2012. Online Operational Early Warning System Prototypes to Forecast Coastal Storm Impacts (CEWS). In: Proc. 33rd Conf. Coast. Eng. 2012, 1142-1149. https://doi.org/10.9753/icce.v33.management.45
  • 24. Harley, M., Armaroli, C., Ciavola, P., 2011. Evaluation of XBeach predictions for a real-time warning system in Emilia-Romagna, Northern Italy. J. Coast. Res. 64, 1861-1865.
  • 25. Karunarathna, H., Pender, D., Ranasinghe, R., Short, A.D., Reeve, D.E., 2014. The effects of storm clustering on beach profile variability. Mar. Geol. 348, 103-112. https://doi.org/10.1016/j.margeo.2013.12.007
  • 26. Kriebel, D.L., Kraus, N.C., Larson, M., 1991. Engineering methods for cross-shore beach profile response. In: Proceedings of Coastal Sediments ’91. ASCE, 557-571.
  • 27. Larson, M., Kraus, C.N., 1989. SBEACH: Numerical model for simulating storm-induced beach change. Report 1, Empirical foundation and model development. Technical Report CERC-89-9, Coast Eng. Research Center, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
  • 28. McCall, R.T., Van Thiel de Vries, J.S.M., Plant, N.G., Van Dongeren, A.R., Roelvink, J.A., Thompson, D.M., Reniers, A.J.H.M., 2010. Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island. Coast. Eng. 57, 668-683. https://doi.org/10.1016/j.coastaleng.2010.02.006
  • 29. Musielak, S., Furmańczyk, K., Bugajny, N., 2017. Factors and processes forming the Polish Southern Baltic Sea coast on various temporal and spatial scales. In: Harff, J., Furmańczyk, K., von Storch, H. (Eds.), Coastline changes of the Baltic Sea from South to East: past and future projection, Vol. 19. Coastal Research Library, 69-86.
  • 30. Musielak, S., Łabuz, T., Wochna, S., 2007. Procesy morfodynamiczne strefy brzegowej Mierzei Dziwnowskiej. In: Florek, W. (Ed.), Geologia i geomorfologia Pobrzeża i Południowego Bałtyku, Wydaw. PAP, Słupsk, 63-75.
  • 31. Palmsten, M.L., Splinter, K.D., 2016. Observations and simulations of wave runup during a laboratory dune erosion experiment. Coast. Eng. 115, 58-66. https://doi.org/10.1016/j.coastaleng. 2016.01.007
  • 32. Paplińska, B., 1994. Weryfikacja widma JONSWAP dla Bałtyku w oparciu o pomiary falowania. In: Pruszak, Z., Wilde, P. (Eds.), Budownictwo morskie a środowisko. Materiały sympozjum. Wydawnictwo IBW PAN, Gdańsk, 73-84.
  • 33. Paplińska, B., 1999. Wave analysis at Lubiatowo and in the Pomeranian Bay based on measurements from 1997/1998 - comparison with modelled data (WAM4 model). Oceanologia 41 (2), 241-254.
  • 34. Paplińska, B., 2001. Specific features of sea waves in the Pomeranian Bay. Archives of Hydro-Engineering and Environmental Mechanics 48, 55-72.
  • 35. Paplińska, B., Reda, A., 2001. Regional variability of the wave climate at the Polish coast of the Baltic Sea. In: Szmidt, K. (Ed.), Zastosowania mechaniki w budownictwie lądowym i wodnym. Księga Jubileuszowa poświęcona 70-leciu urodzin Profesora Piotra Wilde. Wydawnictwo IBW PAN, Gdańsk, 191-215.
  • 36. Pender, D., Karunarathna, H., 2013. A statistical-process based approach for modelling beach profile variability. Coast. Eng. 81, 19-29. https://doi.org/10.1016/j.coastaleng.2013.06.006
  • 37. Racinowski, R, Seul, C, 1999. Brzeg i podbrzeże Mierzei Dziwnowskiej. In: Borówka, R.K., Młynarczyk, Z, Wojciechowski, A (Eds.), Ewolucja geosystemów nadmorskich południowego Bałtyku. Bogucki Wyd. Nauk., Poznań-Szczecin, 115-120.
  • 38. Ranasinghe, R., Swinkels, C., Luijendijk, A., Roelvink, D., Bosboom, J., Stive, M., Walstra, D.J., 2011. Morphodynamic upscaling with the MORFAC approach: Dependencies and sensitivities. Coast. Eng. 58, 806-811. https://doi.org/10.1016/j.coastaleng.2011.03.010
  • 39. Robakiewicz, M., 1991. Analiza długoterminowej zmienności ekstremalnych warunków falowych na Bałtyku Południowym na przykładzie rejonu Półwyspu Helskiego. IBW PAN PhD. thesis.
  • 40. Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., Lescinski, J., McCall, R., 2010. XBeach Model Description and Manual. Unesco-IHE Institute for Water Education. Deltares and Delft University of Technology.
  • 41. Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R., Lescinski, J., 2009. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 56, 1133-1152. https://doi.org/10.1016/j.coastaleng.2009.08.006
  • 42. Sallenger, A.H.J., 2000. Storm impact scale for barrier islands. J. Coast. Res. 16, 890-895.
  • 43. Steetzel, H.J., 1993. Cross-shore transport during storm surges. Delft Technical University, PhD thesis.
  • 44. Simmons, J.A., Harley, M.D., Marshall, L.A., Turner, I.L., Splinter, K.D., Cox, R.J., 2017. Calibrating and assessing uncertainty in coastal numerical models. Coast. Eng. 125, 28-41. https://doi.org/10.1016/j.coastaleng.2017.04.005
  • 45. Simmons, J.A., Splinter, K.D., Harley, M.D., Turner, I.L., 2019. Calibration data requirements for modelling subaerial beach storm erosion. Coast. Eng. 152, 103507. https://doi.org/10.1016/j.coastaleng.2019.103507
  • 46. Splinter, K.D., Palmsten, M.L., 2012. Modeling dune response to an East Coast Low. Mar. Geol. 329-331, 46-57. https://doi.org/10.1016/j.margeo.2012.09.005
  • 47. Splinter, K.D., Strauss, D., Tomlinson, R.B., 2011. Can we reliably estimate dune erosion without knowing pre-storm bathymetry? In: Coasts and Ports 2011: Diverse and Developing: Proceedings of the 20th Australasian Coastal and Ocean Engineering Conference and the 13th Australasian Port and Harbour Conference. Engineers Australia, 694-699.
  • 48. Sutherland, J., Peet, A.H., Soulsby, R.L., 2004. Evaluating the performance of morphological models. Coast. Eng. 51, 917-939. https://doi.org/10.1016/j.coastaleng.2004.07.015
  • 49. Sztobryn, M, Stigge, H.J, Wielbińska, D, Weidig, B, Stanisławczyk, I, Kańska, A, Krzysztofik, K, Kowalska, B, Letkiewicz, B, Mykita, M, 2005. Storm surges in the southern Baltic (western and central parts). Rep. No. 39, Berichte des Bundesamtes für Seeschifffahrt und Hydrographie, Hamburg-Rostock.
  • 50. van Rijn, L.C., Wasltra, D.J.R., Grasmeijer, B., Sutherland, J., Pan, S., Sierra, J.P., 2003. The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coast. Eng. 47, 295-327. https://doi.org/10.1016/S0378-3839(02)00120-5
  • 51. van Thiel de Vries, J.S.M., 2009. Dune Erosion During Storm Surges. Dune Erosion During Storm Surges. IOS Press, Amsterdam.
  • 52. Vellinga, P. , 1986. Beach and dune erosion during storm surges. Delft Hydraulics Comm. No. 372, Delft Hydraulics Laboratory, Delft, The Netherlands.
  • 53. Voukouvalas, E., 2010. Coastal response during the 1953 and 1976 storm surges in the Netherlands. Field data validation of the XBeach model. Delft University of Technology. Master thesis.
  • 54. Vousdoukas, M., Almeida, L., Ferreira, Ó., 2011. Modelling storm-induced beach morphological change in a meso-tidal, reflective beach using XBeach. J. Coast. Res. 64, 1916—1920.
  • 55. Vousdoukas, M.I., Ferreira, Ó., Almeida, L.P., Pacheco, A., 2012. Toward reliable storm-hazard forecasts: XBeach calibration and its potential application in an operational early-warning system. Ocean Dyn. 62, 1001-1015. https://doi.org/10.1007/s10236- 012- 0544- 6
  • 56. WAMDI Group, 1988. The WAM model-a third generation ocean wave prediction model. J. Phys. Oceanogr. 18, 1775-1810.
  • 57. Williams, J.J., Esteves, L.S., Rochford, L.A., 2015. Modelling storm responses on a high-energy coastline with XBeach. Model. Earth Syst. Environ. 1, 3. https://doi.org/10.1007/s40808-015-0003-8
  • 58. Zawadzka-Kahlau, E., 1999. Tendencje rozwojowe polskich brzegów Bałtyku południowego. Gdańskie Towarzystwo Naukowe, Gdańsk, 147 pp.
  • 59. Zeidler, R.B., Wróblewski, A., Miętus, M., Dziadziuszko, Z., Cyberski, J., 1995. Wind, wave, and storm surge regime at the Polish Baltic coast. In: Rotnicki, K. (ed.), Polish Coast: Past, Present and Future. J. Coast. Res. 22, 22-55.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2aa357d2-9c0a-4954-bbc8-6229736a4b1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.