Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | Vol. 62, no. 5 | 1146--1162
Tytuł artykułu

Homogenization of saturated double porous media with Eshelby-like velocity field

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
n this paper, we focus on strength properties of double porous materials having a Drucker–Prager solid phase at microscale. The porosity consists in two populations of micropores and mesopores saturated with different pressures. To this end, we consider a hollow sphere subjected to a uniform strain rate boundary conditions. For the microscale to mesoscale transition, we take advantage of available results by Maghouset al. (2009), while the meso to macro upscaling is performed by implementing a kinematical limit analysis approach using Eshelby like trial velocity fields. This two-step homogenization procedure delivers analytical expression of the macroscopic criterion for the considered class of saturated double porous media. This generalizes and improves previous results established by Shen et al. (2014). The results are discussed in terms of the existence or not of effective stresses. Some illustrations are provided.
Wydawca

Czasopismo
Rocznik
Strony
1146--1162
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
  • Laboratoire de Mécanique de Lille-UMR 8107 CNRS, USTL, Villeneuve d’Ascq, France
autor
  • Laboratoire de Mécanique de Lille-UMR 8107 CNRS, USTL, Villeneuve d’Ascq, France
autor
  • Unité de Recherche Navier, UMR 8205 CNRS, Champs sur Marne, France
autor
Bibliografia
  • 1. Auriault, J.L., and C. Boutin (1992), Deformable porous media with double porosity. Quasi-statics. I: Coupling effects, Transport Porous Med.7, 1, 63-82, DOI:10.1007/BF00617317.
  • 2. Auriault, J.L., and C. Boutin (1993), Deformable porous media with double porosity. Quasi-statics. II: Memory effects, Transport Porous Med.10, 2, 153-169, DOI:10.1007/BF00617006.
  • 3. De Buhan, P. (1986), A fundamental approach to the yield design of reinforced soil structures. Ch. 2: Yield design homogenization theory for periodic media, Ph.D. Thesis, Université Pierre et Marie Curie, Paris VI, France (in French).
  • 4. Dormieux, L., D. Kondo, and F.-J. Ulm (2006),Microporomechanics, J. Wiley & Sons, Chichester.
  • 5. Dormieux, L., A. Molinari, and D. Kondo (2002), Micromechanical approach to the behavior of poroelastic materials,J. Mech. Phys. Solids50, 10, 2203-2231,DOI: 10.1016/S0022-5096(02)00008-X.
  • 6. Durban, D., T. Cohen, Y. Hollander (2010), Plastic response of porous solids with pressure sensitive matrix, Mech. Res. Commun.37, 7, 636-641, DOI:10.1016/j.mechrescom.2010.09.002.
  • 7. Eshelby, J. (1959), The elastic field outside an ellipsoidal inclusion, Proc. Roy. Soc.London A252, 1271, 561-569, DOI: 10.1098/rspa.1959.0173.
  • 8. Guo, T., J. Faleskog, and C. Shih (2008), Continuum modeling of a porous solid with pressure-sensitive dilatant matrix, J. Mech. Phys. Solids56, 6, 2188-2212,DOI: 10.1016/j.jmps.2008.01.006.
  • 9. Gurson, A. (1977), Continuum theory of ductile rupture by void nucleation and growth: Part I - Yield criteria and flow rules for porous ductile media, J. Eng. Mater.Technol.99, 1, 2-15, DOI: 10.1115/1.3443401.
  • 10. Jeong, H. (1999), A new yield function and a hydrostatic stress-controlled void nucleation model for porous solids with pressure-sensitive matrices, Int. J. SolidsStruct.39, 5, 1385-1403, DOI: 10.1016/S0020-7683(01)00260-8.
  • 11. Lee, J., and J. Oung (2000), Yield functions and flow rules for porous pressure-dependent strain-hardening polymeric materials, J. Appl. Mech.67, 2, 288-297, DOI: 10.1115/1.1305278.
  • 12. Lydzba, D., and J.-F. Shao (2002), Stress equivalence principle for saturated porous media,C. R. Mecanique330, 4, 297-303, DOI: 10.1016/S1631-0721(02)01463-8.
  • 13. Maghous, S., L. Dormieux, and J. Barthelemy (2009), Micromechanical approach to the strength properties of frictional geomaterials, Europ. J. Mech. A28, 1,179-188, DOI: 10.1016/j.euromechsol.2008.03.002.
  • 14. Monchiet, V., E. Charkaluk, and D. Kondo (2007), An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields, C. R.Mecanique335, 1, 32-41, DOI: 10.1016/j.crme.2006.12.002.
  • 15. Monchiet, V., E. Charkaluk, and D. Kondo (2011), A micromechanics-based modification of the Gurson criterion by using Eshelby-like velocity fields, Europ. J.Mech. A30, 6, 940-949, DOI: 10.1016/j.euromechsol.2011.05.008.
  • 16. Ortega, J.A., and F.J. Ulm (2013), Strength homogenization of double-porosity cohesive-frictional solids, J. Appl. Mech.80, 2, 020902, DOI:10.1115/1.4007905.
  • 17. Ponte Castañeda, P. (1991), The effective mechanical properties of nonlinear isotropic composites, J. Mech. Phys. Solids39, 1, 45-71, DOI: 10.1016/0022-5096(91)90030-R.
  • 18. Ponte Castañeda, P., and P. Suquet (1998), Nonlinear composites. In: E. van der Giessenand T.Y. Wu (eds.),Advances in Applied Mechanics, Vol. 34, Academic Press, San Diego, 171-302.
  • 19. Rice, J.R., and D.M. Tracey (1969), On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solids17, 3, 201-217, DOI: 10.1016/0022-5096(69)90033-7.
  • 20. Shen, W.Q., Z. He, L. Dormieux, and D. Kondo (2014), Effective strength of saturated double porous media with a Drucker–Prager solid phase, Int. J. Numer. Anal. Meth. Geomech.38, 3, 281-296, DOI: 10.1002/nag.2215.
  • 21. Shen, W.Q., J.F. Shao, L. Dormieux, and D. Kondo (2012), Approximate cri-teria for ductile porous materials having a Green type matrix: Application to double porous media, Comput. Mater. Sci.62, 189-194, DOI:10.1016/j.commatsci.2012.05.021.
  • 22. Suquet, P. (1987), Elements of homogenization for inelastic solid mechanics. In: E. Sanchez-Palencia and A. Zaoui (eds.),Homogenization Techniques for Composite Media, Lecture Notes in Physics, Vol. 272, Springer, Berlin, 193-198, DOI: 10.1007/3-540-17616-0_15.
  • 23. Suquet, P. (1995), Overall properties of nonlinear composites: a modified secant moduli theory and its link with Ponte Castañeda’s nonlinear variational procedure, C.R. Acad. Sc. Paris IIB320, 11, 563-571.
  • 24. Trillat, M., and J. Pastor (2005), Limit analysis and Gurson’s model, Eur. J. Mech. A24, 5, 800-819, DOI: 10.1016/j.euromechsol.2005.06.003.
  • 25. Vincent, P.-G., Y. Monerie, and P. Suquet (2008), Ductile damage of porous materials with two populations of voids, C. R. Mecanique336, 1-2, 245-259, DOI:10.1016/j.crme.2007.11.017.
  • 26. Vincent, P.-G., Y. Monerie, and P. Suquet (2009), Porous materials with two populations of voids under internal pressure: I. Instantaneous constitutive relations, Int. J.Solids Struct.46, 3-4, 480-506, DOI: 10.1016/j.ijsolstr.2008.09.003.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2a00a8ce-0733-48ca-83a1-d816a5bf08f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.