Warianty tytułu
Języki publikacji
Abstrakty
This study utilizes Ti-8Nb-4Co alloys added to different proportions of Mo2C powders (1, 3, and 5 mass%) by the vacuum sintering process of powder metallurgy and simultaneously vacuum sinters the alloys at 1240, 1270, 1300, and 1330°C for 1 h, respectively. The experimental results indicate that when 3 mass% Mo2C powders were added to the Ti-8Nb-4Co alloys, the specimens possessed the optimal mechanical properties after sintering at 1300°C for 1 h. The relative density was 98.02%, and the hardness and TRS were enhanced to 69.6 HRA and 1816.7 MPa, respectively. In addition, the microstructure of vacuum sintered Ti-8Nb-4Co-3Mo2C alloys has both α and β-phase structures, as well as TiC precipitates. EBSD results confirm that the Mo2C in situ produced TiC during the sintering process and was uniformly dispersed in the grain boundary. Moreover, the reduced molybdenum atom acted as a β-phase stabilizing element and solid-solution in the titanium matrix.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1255--1265
Opis fizyczny
Bibliogr. 24 poz., fot., rys., tab.
Twórcy
autor
- National Taipei University of Technology, Department of Materials and Mineral Resources Engineering, Taipei 10608, Taiwan, ROC, changsh@ntut.edu.tw
autor
- National Taipei University of Technology, Department of Materials and Mineral Resources Engineering, Taipei 10608, Taiwan, ROC
autor
- National Kangshan Agricultural Industrial Senior High School, Department of Auto-Mechanics, Kaohsiung 82049, Taiwan, ROC
autor
- National Taipei University of Technology, Department of Materials and Mineral Resources Engineering, Taipei 10608, Taiwan, ROC
Bibliografia
- [1] C.A.F. Salvador, E.L. Maia, F.H. Costa, J.D. Escobar, J.P. Oliveira, Scientific Data 8, 1-6 (2022).
- [2] B. Callegari, J.P. Oliveirac, K. Aristizabal, R.S. Coelho, P.P. Brito, L. Wu, N. Schell, F.A. Soldera, F. Mücklich, H.C. Pinto, Materials Characterization 165, 110400 (2020).
- [3] B. Callegari, J.P. Oliveira, R.S. Coelho, P.P. Brito, N. Schell, F.A. Soldera, F. Mücklich, M.I. Sadik, J.L. García, H.C. Pinto, Materials Characterization 162, 110180 (2020).
- [4] S. Raynova, F. Yang, L. Bolzoni, Materials Science and Engineering: A 799, 140157 (2021).
- [5] C.B. Yi, Y.X. Yuan, L. Zhang, Y.H. Jiang, Z.Y. He, Journal of Alloys And Compounds 879, 160473 (2021).
- [6] I. Çaha, A.C. Alves, P.A.B. Kuroda, C.R. Grandini, A.M.P. Pinto, L.A. Rocha, F. Toptan, Corrosion Science 167, 108488 (2020).
- [7] D. Kalita, Ł. Rogal, T. Czeppe, A. Wójcik, A. Kolano-Burian, P. Zackiewicz, B. Kania, J. Dutkiewicz, Journal of Materials Engineering and Performance 29, 1445-1452 (2020).
- [8] D. Kalita, Ł. Rogal, P. Bobrowski, T. Durejko, T. Czujko, A. Antolak-Dudka, E. Cesari, J. Dutkiewicz, Materials 13, 2827 (2020).
- [9] P.Y. Li, Materials Research Express 6, 076559 (2019).
- [10] B.B. Straumal, A. Korneva, A.R. Kilmametov, L. Lityńska-Dobrzyńska, A.S. Gornakova, R. Chulist, M.I. Karpov, P. Zięba, Materials 12, 426 (2019).
- [11] S.H. Chang, L.Y. Hung, T.H. Yang, Materials Chemistry and Physics 235, 121743 (2019).
- [12] H. Singh, S. Kumar, D. Kumar, Materials Science and Engineering: A 789, 139577 (2020).
- [13] S.H. Chang, C.H. Liang, K.T. Huang, C. Liang, Journal of Alloys and Compounds 857, 157629 (2021).
- [14] S.H. Chang, H.C. Chang, K.T. Huang, Vacuum 187, 110132 (2021).
- [15] S. Cetinkaya, S. Eroglu, JOM 69, 1997-2002 (2017).
- [16] G.H. Zhang, H.Q. Chang, L. Wang, K.C. Chou, International Journal of Minerals, Metallurgy, and Materials 25, 405-412 (2018).
- [17] S.H. Chang, C.Y. Chuang, K.T. Huang, ISIJ international 59, 1354-1361 (2019).
- [18] J. Dang, G.H. Zhang, L. Wang, K.C. Chou, P.C. Pistorius, Journal of the American Ceramic Society 99, 819-824 (2016).
- [19] E Yılmaz, A. Gökçe, F. Findik, O. Gulsoy, O. Lyibilgin, Journal of the Mechanical Behavior of Biomedical Materials 87, 59-67 (2018).
- [20] E Yılmaz, A. Gökçe, F. Findik, O. Gulsoy, Journal of Alloys and Compounds 746, 301-313, (2018).
- [21] E. Yılmaz, A. Gökçe, F. Findik, O. Gulsoy, Journal of Thermal, Analysis and Calorimetry 134, 7-14, (2018).
- [22] E.O. Hall, Proceedings of the Physical Society. Section B 64, 747-753 (1951).
- [23] N.J. Petch, Journal of the Iron and Steel Institute 174, 25-28 (1953).
- [24] S.R. Shatynski, Oxidation of Metals 13, 105-118 (1979).
Uwagi
This research is supported by the National Science and Technology Council
of the Republic of China under Grant No. MOST110-2221-E-027-014-.
The authors would like to express their appreciations for ASSAB STEELS
TaiwaN Co., lTD. Furthermore, thanks to prof. h.C. lin and Mr. C.Y.
Kao of Instrumentation Center, National Taiwan University for EPMA and
EBSD experiments.
of the Republic of China under Grant No. MOST110-2221-E-027-014-.
The authors would like to express their appreciations for ASSAB STEELS
TaiwaN Co., lTD. Furthermore, thanks to prof. h.C. lin and Mr. C.Y.
Kao of Instrumentation Center, National Taiwan University for EPMA and
EBSD experiments.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2953e938-8358-4cc1-8967-8ff953b195d1