Warianty tytułu
Occupants and their behavior in buildings design and operation - Part 1
Języki publikacji
Abstrakty
Transformacja energetyczna wymaga od nas wprowadzania nowych rozwiązań technicznych, które umożliwią zwiększanie efektywności energetycznej budynków: mniejsze zapotrzebowanie na energię i większy udział OZE w pokryciu tego zapotrzebowania. Zmodyfikowany w konsekwencji tego bilans energetyczny budynków i ich technicznego wyposażenia jest bardziej wrażliwy na sposób użytkowania, m.in.: wewnętrzne zyski ciepła, regulację przez użytkowników czy sposób sterowania. Dlatego ważne jest odpowiednie uwzględnienie tego aspektu w praktyce projektowej i eksploatacyjnej. W pierwszej części artykułu omówiono wpływ użytkowania na bilans energetyczny budynków i sposoby modelowania użytkowania budynków w analizach energetycznych oraz wyjaśniono różnicę między dwoma pozornie sprzecznymi modelami komfortu cieplnego: Fangera i adaptacyjnym.
The energy transition implies the deployment of new technical solutions to increase the energy efficiency of buildings: a lower energy demand and a higher share of RES to cover this demand. The resulting modified energy balance of buildings and their technical equipment is more dependent on the way the buildings are used, for example: internal heat gains, adjustment by users or the way the building is controlled. Therefore, it is important to properly consider this aspect in design and operation practice. The first part of the paper discusses the impact of users on the energy balance of buildings, how building users could be modeled in energy analyses, and explains the difference between two seemingly contradictory thermal comfort models: Fanger and adaptive.
Czasopismo
Rocznik
Tom
Strony
81--87
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
autor
- Wydział Inżynierii Środowiska i Energetyki, Politechnika Poznańska
Bibliografia
- 1. de Wilde P., Building Performance Gaps: a Commentary, Acad. Lett., 2021, 815, https://doi.org/https://doi.org/10.20935/AL815
- 2. Andersen R.K., The influence of occupants' behaviour on energy consumption investigated in 290 identical dwellings and in 35 apartments, in: Heal. Build., 2012, July 8-12, https://www.researchgate.net/publication/255709305 (dostęp: 2.01.2023)
- 3. Andersen S., Andersen R.K., Olesen B.W., Influence of heat cost allocation on occupants' control of indoor environment in 56 apartments: Studied with measurements, interviews and questionnaires, Build. Environ., 101, 2016, 1-8, https://doi.org/10.1016/J.BUILDENV.2016.02.024
- 4. Sarran L., Brackley C., Day J.K., Bandurski K., André M., Spigliantini G., Roetzel A., Gauthier S., Stopps H., Agee P., Crosby S., Lingua C., Untold Stories from the Field: a Novel Platform for Collecting Practical Learnings on Human-Building Interactions, in: IAQ 2020 Indoor Environ. Qual. Perform. Approaches. Transitioning from IAQ to IEQ, Athens, Greece, 2021
- 5. Bartkiewicz Piotr, Tomiczek Bartłomiej, Proces odbioru systemów HVAC w budynkach zrównoważonych, „Rynek Instalacyjny 9/2021, https://www.rynekinstalacyjny.pl/artykul/lnstalacje-c-o-grzejniki/148810.proces-odbioru-systemow-hvac-w-budynkach-zrownowazonych (dostęp: 2.01.2023)
- 6. Berger C., Mahdavi A., Azar E., Bandurski K., Bourikas L., Harputlugil T., Hellwig R.T., Rupp R.F., Schweiker M., Reflections on the Evidentiary Basis of Indoor Air Quality Standards, Energies 2022, Vol. 15, Page 7727, https://doi.org/10.3390/EN15207727
- 7. Andersen R.K., Olesen B.W., Toftum J., Simulation of the Effects of Occupant Behaviour on Indoor Climate and Energy Consumption, In: Proc. Clima 2007 9th REHVA World Congr. WellBeing Indoors, 2007
- 8. O'Brien W., Gunay H.B., The contextual factors contributing to occupants' adaptive comfort behaviors in offices - A review and proposed modeling framework, Build. Environ., 77, 2014, 77-87, https://doi.org/10.1016/j. buildenv.2014.03.024
- 9. Day J.K., O'Brien W., Oh behave! Survey stories and lessons learned from building occupants in high-performance buildings, Energy Res. Soc. Sci., 31, 2017, 11-20, https://doi.org/10.1016/j.erss.2017.05.037
- 10. O'Brien W., Schweiker M., Day J.K., Get the picture? Lessons learned from a smartphone-based post-occupancy evaluation, Energy Res. Soc. Sci., 56,2019, https://doi.org/10.1016/j.erss.2019.101224
- 11. Day J.K., Mcllvennie C., Brackley C., Tarantinl M., Piselli C., Hahn J., O'Brien W., Rajus V.S., De Simone M., Kjærgaard M.B., Derbas G., Pisello A.L, A review of select human-building interfaces and their relationship to human behavior, energy use and occupant comfort, Build. Environ., 178, 2020, https://doi.org/10.1016/j. buildenv.2020.106920
- 12. Heydarian A., Mcllvennie C., Arpan L., Vousefi S., Syndicus M., Schweiker M., Jazizadeh F., Rissetto R., Pisello A.L., Piselli C., Yan Z., Mahdavi A., What drives our behaviors in buildings? A review on occupant interactions with building systems from the lens of behavioral theories, Build. Environ., 179,2020, https:// doi.org/10.1016/j.buildenv.2020.106928
- 13. Shi X., Si B., Zhao J., Tian Z., Wang C., Jin X., Zhou X., Magnitude, causes, and solutions of the performance gap of buildings: A review, Sustain., 11, 2019, https:// doi.org/10.3390/su11030937
- 14. ANSI/ASHRAE 140-2020 Method of Test for Evaluating Building Performance Simulation Software
- 15. PN-EN ISO 52016-1:2017-09, Energetyczne właściwości użytkowe budynków. Zapotrzebowanie na energię do ogrzewania i chłodzenia, wewnętrzne temperatury oraz jawne i utajone obciążenia cieplne. Część 1: Procedury obliczania
- 16. Strachan P., Svehla K., Heusler I., Kersken M., Whole model empirical validation on a full-scale building, J. Build. Perform. Simul., 9, 2016, 331-350, https://doi.org/10.1080/19401493.2015.1064480
- 17. Mahdavi A., Berger C., Amin H., Ampatzi E., Andersen R.K., Azar E., Barthelmes V.M., Favero M., Hahn J., Khovalyg D., Touchie M., Verbruggen S., The role of occupants in buildings' energy performance gap: Myth or reality?, Sustain, 13, 2021, https://doi.org/10.3390/su13063146
- 18. van den Brom P., Hansen A.R., Gram-Hanssen K., Meijer A., Visscher H., Variances in residential heating consumption - Importance of building characteristics and occupants analysed by movers and stayers, Appl, Energy, 250, 2019, 713-728, https://doi.org/10.1016/j.apenergy.2019.05,078
- 19. Johnston D., Siddall M., Ottinger 0., Peper S., Feist W., Are the energy savings of the passive house standard reliable? A review of the as-built thermal and space heating performance of passive house dwellings from 1990 to 2018, 13, 2020, 1605-1631, https://doi.org/10.1007/s12053-020-09855-7
- 20. https://passivehouse.com/ (dostęp: 2.01.2023)
- 21. Passive House Institute, Passive House Planning Package. Version 9, 2015, https://passivehouse.com/04_phpp/04_phpp.htm
- 22. de Wilde P., Book Promotion Contest 2021, https:// www.bldg-perf.org/pba-the-book/book-promotion-contest-2021/ (dostęp: 13.10.2021)
- 23. Hensen J.L.M., Djunaedy E., Jak niewidzialne uczynic widzialnym - zastosowanie symulacji budynku na przykładzie przepływów powietrza, w: Popiołek Z. (red.), „Energooszczędne kształtowanie środowiska wewnętrznego", p. 312-324, Politechnika Śląska, Katedra Ogrzewnictwa, Wentylacji i Techniki Odpylania, Gliwice 2005
- 24. PN-EN 16798-1:2019-06 Charakterystyka energetyczna budynków. Wentylacja budynków. Część 1: Parametry wejściowe środowiska wewnętrznego do projektowania i oceny charakterystyki energetycznej budynków w odniesieniu do jakości powietrza wewnętrznego
- 25. Ahmed K., Akhondzada A., Kurnitski J., Olesen B., Occupancy schedules for energy simulation in new prEN16798-1 and ISO/FDIS 17772-1 standards, Sustain. CITIES Soc. 35, 2017, 134-144, https://doi.org/10.1016/j.scs.2017.07.010
- 26. O'Brien W., Tahmasebi F., Andersen R.K., Azar E., Barthelmes V., Belafi Z.D., Berger C., Chen D., De Simone M., d'Oca S., Yan D., Zhou J., An international review of occupant-related aspects of building energy codes and standards, Build. Environ., 179, 2020, https://doi.org/10.1016/j.buildenv.2020.106906
- 27. Tahmasebi F., Mahdavi A., An inquiry into the reliability of window operation models in building performance simulation, Build. Environ., 105, 2016, 343-357, https://doi.org/10.1016/j.buildenv.2016.06.013
- 28. BusoT., Fabi V., Andersen R.K., Corgnati S.P., Occupant behaviour and robustness of building design, Build. Environ., 94, 2015, 694-703, https://doi.org/10.1016/j.buildenv.2015.11.003
- 29. Tahmasebi F., Mahdavi A., On the utility of occupants' behavioural diversity information for building performance simulation: An exploratory case study, Energy Build., 176, 2018, 380-389, https://doi.org/10.1016/j.enbuild.2018.07.042
- 30. Mahdavi A., Tahmasebi F., The deployment-dependence of occupancy-related models in building performance simulation, Energy Build., 117, 2016, 313-320, https://doi.org/10.1016/j.enbuild.2015.09.065
- 31. Tahmasebi F., Mahdavi A., The sensitivity of building performance simulation results to the choice of occupants' presence models: a case study, J. Build. Perform. Simul., 10, 2017, 625-635, https://doi.org/10.1080/19401493.2015.1117528
- 32. Gaetani I., HoesP.-J., Hensen J.L.M., A stepwise approach for assessing the appropriate occupant behaviour modelling in building performance simulation, J. Build. Perform. Simul., 13, 2020, 362-377, https://doi.org/10.1080/19401493.2020.1734660
- 33. Yan D., Hong I., Dong B., Mahdavi A., D'Oca S., Gaetani l., Feng X., IEA EBC Annex 66: Definition and simulation of occupant behavior in buildings, Energy Build., 156, 2017, 258-270, https://doi.org/10.1016/j.enbuild.2017.09.084
- 34. Malik J., Hong I., Mahdavi A., Azar E., Recent advances in agent-based occupant modeling, IbpsaNEWS, 32, 2022, 29-34, http://www.ibpsa.org/Newsletter/IBPSANews-32-2.pdf
- 35. ASHRAE Global Occupant Behavior Database, https://ashraeobdatabase.com/#/ (dostęp: 27.01.2022)
- 36. Dong B., Liu Y., Mu W., Jiang Z., Pandey P., Hong T., Olesen B., Lawrence T., O'Neil Z., Andrews C., Azar E., Bandurski K., Bardhan R., Bavaresco M., Berger C., Burry J., Carlucci S., Chvatal K., De Simone M., Erba S., Gao N., Graham L.T., Grassi C., Jain R., Kumar S., Kjaergaard M., Korsavi S., Langevin J., Li Z., Lipczynska A., Mahdavi A., Malik J., Marschall M., Nagy Z., Neves L., O'Brien W., Pan S., Park J.Y., Pigliautile I., Piselli C., Pisello A.L., Rafsanjani H.N., Rupp R.F., Salim F., Schiavon S., Schwee J., Sonta A., Touchie M., Wagner A., Walsh S., Wang Z., Webber D.M., Yan D., Zangheri P., Zhang J., Zhou X., A Global Building Occupant Behavior Database, Sci. Data 2022, 91, 9, 1-15, https://doi.org/10.1038/s41597-022-01475-3
- 37. Fanger P.O., Komfort cieplny, Arkady, Warszawa 1974
- 38. Humphreys M.A., Nicol J.F., Understanding the adaptive approach to thermal comfort, ASHRAE Trans., 104, 1998, 991-1004
- 39. de Dear R., A global database of thermal comfort field experiments, ASHRAE Trans., 104, 1998
- 40. Földváary Ličina V., Cheung T., Zhang H., de Dear R., Parkinson T., Arens E., Chun C., Schiavon S., Luo M., Brager G., Li P., Kaam S., Adebamowo M.A., Andamon M.M., Babich F., Bouden C., Bukovianska H., Candido C., Cao B., Carlucci S., Cheong D.K.W., Choi J.H., Cook M., Cropper P., Deuble M., Heidari S., Indraganti M., Jin Q., Kim H., Kim J., Konis K., Singh M.K., Kwok A., Lamberts R., Loveday D., Langevin J., Manu S., Moosmann C., Nicol F., Ooka R., Oseland N.A., Pagliano L., Petráš D., Rawal R., Romero R., Rijal H.B., Sekhar C., Schweiker M., Tartarini F., Tanabe S.I., Tham K.W., Teli D., Toftum J., Toledo L., Tsuzuki K., De Vecchi R., Wagner A., Wang Z., Wallbaum H., Webb L., Yang L., Zhu Y., Zhai Y, Zhang Y., Zhou X., Development of the ASHRAE Global Thermal Comfort Database II, Build. Environ., 142, 2018, 502-512, https://doi.org/10.1016/J.BUILDENV.2018.06.022
- 41. ASHRAE Global Thermal Comfort Database II Visualization, https://cbe-berkeley.shinyapps.io/comfortdatabase/ (dostęp: 3.01.2023)
- 42. ISO 7730:2005 Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, https ://www.iso.org/standard/39155.html
- 43. ANSI/ASHRAE Standard 55-2020 Thermal Environmental Conditions for Human Occupancy
- 44. Schweiker M., Wagner A., A framework for an adaptive thermal heat balance model (ATHB), Build. Environ., 94, 2015, 252-262, https://doi.org/10.1016/j.buildenv.2015.08.018
- 45. Schweiker M., Combining adaptive and heat balance models for thermal sensation prediction: Anew approach towards a theory and data-driven adaptive thermal heat balance model, Indoor Air., 32, 2022, e13018, https://doi.org/10.1111/INA.13018
- 46. Schweiker M., André M., Al-Atrash F., Al-Khatri H., Alprianti R.R., Alsaad H., Amin R., Ampatzi E., Arsano A.Y., Azar E., Bannazadeh B., Batagarawa A., Becker S., Buonocore C., Cao B., Choi J.H., Chun C., Daanen H., Damiati S.A., Daniel L., De Vecchi R., Dhaka S., Domínguez-Amarillo S., Dudkiewicz E., Edappilly L.P., Fernández-Agüera J., Folkerts M., Frijns A., Gaona G., Garg V., Gauthier S., Jabbari S.G., Harimi D., Hellwig R.T., Huebner G.M., Jin Q., Jowkar M., Kim J., King N., Kingma B., Koerniawan M.D., Kolarik J., Kumar S., Kwok A., Lamberts R., Laska M., Lee M.C.J., Lee Y., Lindermayr V., Mahaki M., Marcel-Okafor U., Marin-Restrepo L., Marquardsen A., Martellotta F., Mathur J., Mino-Rodriguez I., Montazami A., Mou D., Moujalled B., Nakajima M., Ng E., Okafor M., Olweny M., Ouyang W., Papstde Abreu A.L., Pérez-Fargallo A., Rajapaksha I., Ramos G., Rashid S., Reinhart C.F., Rivera M.I., Salmanzadeh M., Schakib-Ekbatan K., Schiavon S., Shooshtarian S., Shukuya M., Soebarto V., Suhendri S., Tahsildoost M., Tartarini F., Teli D., Tewari P., Thapa S., Trebilcock M., Trojan J., Tukur R.B., Voelker C., Yam Y., Yang L., Zapata-Lancaster G., Zhai Y., Zhu Y., Zomorodian Z.S., Evaluating assumptions of scales for subjective assessment of thermal environments - Do laypersons perceive them the way, we researchers believe?, Energy Build., 211, 2020, 109761, https://doi.org/10.1016/J.ENBUILD.2020.109761
- 47. Nicol F., Rijal H.B., Roaf S., eds., Routledge Handbook of Resilient Thermal Comfort, Routledge, London and New York, 2022
- 48. Roaf S., Comfort Justice: How International Comfort Standards are Driving Climate Change, https://www.youtube.com/watch?v=mbsdb70e4SM (dostęp: 4.01.2023)
- 49. Yu J., Ouyang Q., Zhu Y., Shen H., Cao G., Cui W., A comparison of the thermal adaptability of people accustomed to air-conditioned environments and naturally ventilated environments., Indoor Air., 22, 2012, 110-8, https://doi.org/10.1111/j.1600-0668.2011.00746.x
- 50. Schweiker M., Ampatzi E., Andargie M.S., Andersen R.K., Azar E., Barthelmes V.M., Berger C., Bourikas L., Carlucci S., Chinazzo G., Sharma K., Zhang S., Review of multi-domain approaches to indoor environmental perception and behaviour, Build. Environ., 176, 2020, https://doi.org/10.1016/j.buildenv.2020.106804
- 51. Vellei M., de Dear R., Le Dreau J., Nicolle J., Rendu M., Abadie M., Michaux G., Doya M., Dynamic thermal perception under whole-body cyclical conditions: Thermal overshoot and thermal habituation, Build. Environ., 226, 2022, https://doi.org/10.1016/j.buildenv.2022.109677
- 52. Vellei M., de Dear R., Inard C., Jay 0., Dynamic thermal perception: A review and agenda for future experimental research, Build. Environ., 205, 2021, 108269, https://doi.org/10.1016/J.BUILDENV.2021.108269
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-291b5e7a-989c-4b9b-91a4-10a6d2ab66a9