Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 14, no. 4 | 561--568
Tytuł artykułu

Taguchi optimization of the thickness of a coating deposited by LPCS

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The low-pressure cold spray (LPCS) technique is used to produce conducting, anticorrosive, insulating, etc., coatings. In order to increase the efficiency of the process the latter is often automated by attaching the spraying gun to a robot or a manipulator. However, because of the large number of interdependent parameters the thickness of the run obtained in one pass of the spraying gun may range from a few hundred micrometres to as much as a few millimetres. As a result, a coating with varied surface waviness and roughness is obtained. This paper focuses on determining the optimal LPCS process parameters yielding a coating having the desired thickness. For this purpose, the Taguchi method was employed whereby the experiment could be properly designed and the principal parameters having the greatest influence on the process could be determined. The L16′ orthogonal table, four key process parameters and four levels of values for each were used. The input parameters were: powder feeding rate, spraying gun travel velocity, gas pressure and temperature. The output parameter was coating thickness. For verification purposes composite (aluminium + alumina) coatings were deposited.
Wydawca

Rocznik
Strony
561--568
Opis fizyczny
Bibliogr. 20 poz., rys., tab.,wykr.
Twórcy
autor
  • Wroclaw University of Technology, ul. Lukasiewicza 7/9, 50-371 Wroclaw, Poland
  • Wroclaw University of Technology, ul. Lukasiewicza 7/9, 50-371 Wroclaw, Poland
Bibliografia
  • [1] B. Jodoin, P. Richer, G. Bérubé, L. Ajdelsztajn, A. Erdi-Betchi, M. Yandouzi, Pulsed-gas dynamic spraying: process analysis, development and selected coating examples, Surface & Coatings Technology 201 (2007) 7544–7551.
  • [2] X.-J. Ning, Q.-S. Wang, Z. Ma, H.-J. Kim, Numerical study of in-flight particle parameters in low-pressure cold spray process, Journal of Thermal Spray Technology 19 (6) (2010) 1211–1217.
  • [3] T. Schmidt, F. Gärtner, H. Assadi, H. Kreye, Development of a generalized parameter window for cold spray deposition, Acta Materialia 54 (2006) 729–742.
  • [4] T. Hussain, D.G. McCartney, P.H. Shipway, D. Zhang, Bonding mechanisms in cold spraying: the contributions of metallurgical and mechanical components, Journal of Thermal Spray Technology 18 (3) (2009) 364–379.
  • [5] V. Luzin, K. Spencer, M.-X. Zhang, Residual stress and thermo-mechanical properties of cold spray metal coatings, Acta Materialia 59 (2011) 1259–1270.
  • [6] R. Goyal, R.S. Walia, T.S. Sidhu, Study of coating thickness of cold spray process using Taguchi method, Materials and Manufacturing Process 27 (2012) 185–192.
  • [7] T. Van Steenkiste, J.R. Smith, Evaluation of coatings produced via kinetic and cold spray process, Journal of Thermal Spray Technology 13 (2) (2004) 274–282.
  • [8] T. Van Steenkiste, D.W. Gorkiewicz, Analysis of tantalum coatings produced by the kinetic spray process, Journal of Thermal Spray Technology 13 (2) (2004) 265–273.
  • [9] T.H. Van Steenkiste, J.R. Smith, R.E. Teets, Aluminum coatings via kinetic spray with relatively large powder particles, Surface and Coatings Technology 154 (2002) 237–252.
  • [10] H.-J. Kim, C.-H. Lee, S.-Y. Hwang, Fabrication of WC–Co coatings by cold spray deposition, Surface & Coatings Technology 191 (2005) 335–340.
  • [11] P.-H. Gao, Y.-G. Li, C.-J. Li, G.-J. Yang, C.-X. Li, Influence of powder porous structure on the deposition behavior of cold-sprayed WC–12Co coating, Journal of Thermal Spray Technology 17 (5/6) (2008) 742–749.
  • [12] H. Koivuluoto, J. Lagerbom, M. Kylmälahti, P. Vuoristo, Microstructure and mechanical properties of low-pressure cold-sprayed (LPCS) coatings, Journal of Thermal Spray Technology 17 (5/6) (2008) 721–727.
  • [13] H. Koivuluoto, P. Vuoristo, Effect of powder type and composition on structure and mechanical properties of Cu + Al2O3 coatings prepared by using low-pressure cold spray process, Journal of Thermal Spray Technology 19 (5) (2010) 1081–1092.
  • [14] H. Lee, H. Shin, K. Ko, Effects of gas pressure of cold spray on the formation of Al-based intermetallic compound, Journal of Thermal Spray Technology 19 (1/2) (2010) 102–109.
  • [15] D. Poirier, J.-G. Legoux, R.A.L. Drew, R. Gauvin, Consolidation of Al2O3/Al nanocomposite powder by cold spray, Journal of Thermal Spray Technology 20 (1/2) (2011) 275–284.
  • [16] D. Wilmot, Ch. D. Howe, R. Todorovic, B. Hoiland, Low pressure cold spray conductive coatings – a case study, The AMMTIAC Quarterly 5 (1) (2010) 3–5.
  • [17] S. Prabhu, B.K. Vinayagam, AFM surface investigation of Inconel 825 with multi wall carbon nano tube in electrical discharge machining process using Taguchi analysis, Archives of Civil and Mechanical Engineering 11 (1) (2011) 149–170.
  • [18] M.S. Phadke, Quality Engineering using Robust Design, Prentice Hall, Upper Saddle River, 1989.
  • [19] V.K. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications, Woodhead Publishing Limited, Cambridge, 2007.
  • [20] S. Rech, A. Trentin, S. Vezzu, J.-G. Legoux, E. Irissou, M. Guagliano, Influence of pre-heated Al 6061 substrate temperature on the residual stresses of multipass Al coatings deposited by cold spray, Journal of Thermal Spray Technology 20 (1/2) (2011) 243–251.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-28e8d5b5-28dc-47f1-bc87-2c9f6f0d3408
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.