Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | Vol. 63, no. 6 | 1639--1663
Tytuł artykułu

Estimating Flood Quantiles on the Basis of Multi-Event Rainfall Simulation - Case Study

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an approach to estimating the probability distribution of annual discharges Q based on rainfall-runoff modelling using multiple rainfall events. The approach is based on the prior knowledge about the probability distribution of annual maximum daily totals of rainfall P in a natural catchment, random disaggregation of the totals into hourly values, and rainfall-runoff modelling. The presented Multi-Event Simulation of Extreme Flood method (MESEF) combines design event method based on single-rainfall event modelling, and continuous simulation method used for estimating the maximum discharges of a given exceedance probability using rainfall-runoff models. In the paper, the flood quantiles were estimated using the MESEF method, and then compared to the flood quantiles estimated using classical statistical method based on observed data.
Wydawca

Czasopismo
Rocznik
Strony
1639--1663
Opis fizyczny
Bibliogr. 25 poz., rys. tab., wykr.
Twórcy
  • Institute of Water Engineering and Water Management, Cracow University of Technology, Cracow, Poland, ejarosin3@gmail.com
autor
Bibliografia
  • [1] Banasik, K. (2009), Determining of Flood-swelling in Small Urban Catchments, Warsaw University of Life Sciences Press, Warsaw, 42 pp. (in Polish).
  • [2] Boughton, W., and O. Droop (2003), Continuous simulation for design flood estimation - a review, Environ. Modell. Softw. 18, 4, 309-318, DOI: 10.1016/ S1364-8152(03)00004-5.
  • [3] Calver, A., and R. Lamb (1995), Flood frequency estimation using continuous rainfall- runoff modelling, Phys. Chem. Earth 20, 5-6, 479-483, DOI: 10.1016/ S0079-1946(96)00010-9.
  • [4] Cameron, D.S., K.J. Beven, J. Tawn, S. Blazkova, and P. Naden (1999), Flood frequency estimation by continuous simulation for a gauged upland catchment (with uncertainty), J. Hydrol. 219, 3-4, 169-187, DOI: 10.1016/S0022-1694(99)00057-8.
  • [5] DVWK (1984), Arbeitsanleitung zur Anwedung von Niederschlag-Abfluss Modellen in kleinen Einzugsgebieten, Teil II: Synthese, Deutscher Verband für Wasserwirtschaft und Kulturbau, Vol. 113, Paul Parey Verlag, Hamburg (in German).
  • [6] Francés, F., R. García-Bartual, E. Ortiz, S. Salazar, J. Miralles, G. Blöschl, J. Komma, C. Habereder, A. Bronstert, and T. Blume (2008), CRUE Research Report No. I-6: Efficiency of non-structural flood mitigation measures: “room for the river” and “retaining water in the landscape”, CRUE Funding Initiative on Flood Risk Management Research, London, 172-213.
  • [7] Hawkins, R.H., T.J. Ward, D.E. Woodward, and J.A. van Mullem (eds.) (2009), Curve Number Hydrology: State of the Practice, ASCE/EWRI Curve Number Hydrology Task Committee, American Society of Civil Engineers. Reston, DOI: 10.1061/9780784410042.
  • [8] Kowalczak, P. (2011), Climate variability and the causes of the floods in Poland, Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Poznań, Poland, http://www.umweltaktion.de/pics/medien/1_1324305988/Vortrag_Kowalczak.pdf (in Polish).
  • [9] KPZK 2030 (2012), National Spatial Development Concept 2030, Monitor Polski, Warszawa, 27.04.2012, Poz. 252 (in Polish).
  • [10] Lee, K.T., and J.K. Huang (2013), Runoff simulation considering time-varying partial contributing area based on current precipitation index, J. Hydrol. 486, 443-454, DOI: 10.1016/j.jhydrol.2013.02.016.
  • [11] Licznar, P. (2009), Generators of Synthetic Rain Rows for Modelling of the Stormwater Drainage and Combined Sewage Systems, Wrocław University of Environmental and Life Sciences Publ., Wrocław, 180 pp. (in Polish).
  • [12] Mishra, S.K., and V.P. Singh (2003), Soil Conservation Service Curve Number (SCS-CN) Methodology, Water Science and Technology Library, Vol. 42, Kluwer Academic Publishers, Dordrecht, 519 pp.
  • [13] Nowicka, B., U. Soczyńska, and U. Somorowska (1997), Prediction of the design floods frequency. In: U. Soczyńska (ed.), Prediction of the Design Storms and Floods, University of Warsaw Publisher, Warsaw, 143-177 (in Polish).
  • [14] Osuch, M., R.J. Romanowicz, E. Paquet, and F. Garavaglia (2013), Application of the SCHADEX method to estimate annual maximum flow of given exceedance probability of the Nysa Kłodzka river. In: S. Węglarczyk (ed.), The Problems of Calculating Extreme Discharge in Controlled and Uncontrolled Catchments, Monographs of Committee of Environmental Engineering PAS, Vol. 35, 73-86 (in Polish).
  • [15] Paquet, E., F. Garavaglia, R. Garçon, and J. Gailhard (2013), The SCHADEX method: A semi-continuous rainfall-runoff simulation for extreme flood estimation, J. Hydrol. 495, 23-37, DOI: 10.1016/j.jhydrol.2013.04.045.
  • [16] Pathiraja, S., S. Westra, and A. Sharma (2012), Why continuous simulation? The role of antecedent moisture in design flood estimation, Water Resour. Res. 48, 6, W0653, DOI: 10.1029/2011WR010997.
  • [17] Pilgrim, D.H., and I. Cordery (1993), Flood runoff. In: D.R. Maidment (ed.), Handbook of Hydrology, McGraw-Hill Inc., New York, 9.1-9.42.
  • [18] Rahman, A., P.E. Weinmann, T.M.T. Hoang, and E.M. Laurenson (2002), Monte Carlo simulation of flood frequency curves from rainfall, J. Hydrol. 256, 3-4, 196-210, DOI: 10.1016/S0022-1694(01)00533-9.
  • [19] RZGW (2014), Regulation no. 4/2014 of Director of Regional Water Management Board in Kraków (the RZGW in Kraków) of 16 January 2014 on conditions to use water of Górna Wisła water region, Regionalny Zarząd Gospodarki Wodnej, Kraków, Poland, http://bip.malopolska.pl/rzgwkrakow/Article/get/id,848610.html (in Polish).
  • [20] Scharffenberg, W., and M. Fleming (2010), Hydrologic modeling system HECHMS v.3.5 user’s manual, U.S. Army Corps of Engineers, Davis, USA.
  • [21] SPA 2020 (2013), Polish National Strategy for Adaptation to Climate Change (SPA 2020), Ministry of Environment, Warszawa, Poland, http://klimada.mos.gov.pl/wp-content/uploads/2013/10/SPA2020.pdf (in Polish).
  • [22] Stedinger, J.R., R.M. Vogel, and E. Foufoula-Georgiou (1993), Frequency analysis of extreme events. In: D.R. Maidment (ed.), Handbook of Hydrology, McGraw-Hill Inc., New York, 18.1-18.66.
  • [23] USDA (1986), Urban hydrology for small watersheds, Technical Release No. 55, United States Department of Agriculture, U.S. Government Printing Office, Washington DC.
  • [24] Węglarczyk, S. (2010), Statistics in Environmental Engineering, Cracow University of Technology Publisher, Cracow (in Polish).
  • [25] Więzik, B. (2010), Annual maximum discharges of given exceedance probability in small ungauged catchments. In: B. Więzik (ed.), Hydrology in Engineering and the Water Management, Monographs of Committee of Environmental Engineering PAS, Vol. 68, 153-165 (in Polish).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-28ba14f6-5586-4920-8fa8-011de270f471
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.