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Abstract

The disruption of services must be kept at a minimum in telecommunications networks so that the con-
seguences are not too severe and their durations are as short as possible. Maintenance policies often
rely on the steady-state avail abilities of each element of the system, and focus on the system’ sweak links.
The end-to-end (or two-terminal) availability — a standard performance index — of a meshed network
has long been studied, but mainly for small systems, and assuming constant values for the availability
of each element. When taken into account, the time-dependent contributions of links and nodes to the
system unavailability were computed using exponential failure and repair distributions. In this work we
revisit the meshed network first proposed by Walter, Esch, and Limbourg (ESREL 2008), and compute
the end-to-end availability between two nodes, where the individual contributions of linksand nodes are
kept. Thisallowsthe ranking of links and nodes, using well-known performance indices (Birnbaum, Risk
Reduction Worth, etc.). We can thus deter mine the elements that should receive due attention in mainte-
nance and resilience studies. However, as the steady-state availability may not always be a lower bound
to the transient availability in the case of non-exponential failure and repair distributions, we have
studied the influence of such configurations on the time-dependent behaviours of all the aforementioned
guantities. We then discuss the influence of uncertainty in the availability values, and compare the re-
sults obtained for the all-terminal reliability, another often-used performance criterion of networks.

1. Introduction

Telecommunications networks must recover
quickly after failures, natural events, cyberat-
tacks, and so on. Determining the weak links of
the system allows the development of effective
maintenance strategies. Standard approaches are
mostly based on the knowledge of the steady-state
availabilities of the various components of the
whole system.

Recent publications have shown important transi-
ent variations of the availability in severa tele-
communications subfields: 5G systems and Net-
work Virtualization Functions studies (Mauro et
al., 2017, 2018), high availability of cluster con-
figurations (Distefano et a., 2010), and commu-
nication channels in the European railway indus-
try (Carnevali et ., 2015), to cite but afew. They

demonstrate that the availability may oscillate for
an extended period of time.

Resilience issues have aso initiated a large body
of work, and it isworth noticing that, especially in
the last few years, time-dependent aspects of re-
silience have come to the fore in urban and com-
modities infrastructures (Li et al., 2020; Ouyang
& Dueiias-Osorio, 2012; Lin & El-Tawil, 2020;
Zeiler et al, 2017; Zeng et & ., 2021). Such studies
may require important computational effort, be-
cause the investigated systems may be very large.
Another fruitful approach has been to consider
medium-sized systems, for which the number of
parameters remainstractablewhile allowing to get
insights about the behaviour of larger systems.
Such a configuration has recently been studied
(Eid, 2021; Tanguy, 20224), in which the time-de-
pendent contributions of nodes and links to the
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globa al-terminal availability (the al-terminal
reliability or availability, usually written Rela in
the literature, represents the probability that al
nodes of a network are connected) have been as-
sessed, when components undergo failuresand re-
pairs obeying exponential distributions.

This approach is very promising for the descrip-
tion of telecommunications networks, and we
have decided to apply some of our former results
in the case of non-exponential distributions (Tan-
guy et a., 2019; Tanguy, 2020) to investigate the
assessment of potential weak links of the network,
and determine when the assumption of exponen-
tia distributions may be questionable.

In the present work, we consider another perfor-
mance measure of telecommunication networks,
namely the end-to-end (or point-to-point) availa
bility, also called two-terminal availability in the
literature (usually written as Rel2(S — T), the
probability of operation between source S and
destination T). For such a measure, contributions
of nodes and links cannot aways be separated.
We show that, similarly to what occursfor the all-
terminal availability in the Eid configuration (Eid,
2021; Tanguy, 2022a), transient effects may not
be neglected, especialy when failure time distri-
butions are not restricted to exponentials.

The chapter, in which we assume no correlation
between elements of the system, is organized as
follows. In Section 2, we present the medium-
sized network architecture proposed in (Walter et
al., 2008), along with the main assumptions on the
availabilities of the nodes and links. Section 3 de-
scribes the method used to obtain the end-to-end
availability between source and destination. This
expression is much simpler when al nodes and
links are supposed identical, with availabilities p
and p, respectively. In Section 4, we compute a
few performance measures (Birnbaum, Raw
Achievement Worth (RAW), Risk Reduction
Worth (RRW), etc.) in order to determine the
weakest links of the system, so that maintenance
efforts are focussed on the proper network ele-
ments, bethey nodes or links. Section 5 is devoted
to the study of the relative influence of links and
nodes to the total end-to-end availability. We
show that it may strongly depend on transients
(during the mission time) even if in thelong term,
the steady-state behaviour is recovered, as ex-
pected. We discuss in Section 6 the influence of
another factor, namely the uncertainty about the
Mean Time To Failure (MTTF) and Mean Time
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To Repair (MTTR) on theranking of the system’s
components. We aso compare the results ob-
tained with those derived for the all-terminal
availability. We conclude with remarks about the
assessment of the reliability of large systems
(Kotowrocki, 2004).

2. Description of network
2.1. Graph representation of network

The network considered in thiswork has been pro-
posed in (Walter et al., 2008), and is represented
by the graph displayed in Figure 1. The perfor-
mance index considered here is the two-terminal
reliability or availability, depending on the con-
text (their expressions are formally identical,
namely the probability that the source and desti-
nation nodes are connected). It has long been
known that the computation of the two-terminal
reliability for the most general graphs is complex
even when nodes are perfect (they do not fail), and
when edges of the graph have the same reliabil-
ity/availability p. It may become cumbersome
even for a small number of nodes in the underly-
ing graph (Beichelt & Tittmann, 2012).

Figure 1. Network considered in this study (after
Walter et al., 2008).

In Figure 1 the source node is S, the destination
node is T. The graph is undirected. Intermediate
nodes and links are labelled.

2.2. Reference numerical data

As mentioned in the Introduction, the availabili-
ties of nodes and links are often assumed to take
their steady-state values, and do not vary with
time. When atime-dependence isintroduced, it is
mostly through the use of exponentia distribu-
tionsfor lifetimes and repairs. For this reason, we
shall consider the numerical values given in Ta-
ble1for thefailureand repair rates of all the nodes
and links of the system, assuming identical ele-
ments for the two families of equipment.
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Table 1. Failure and repair rate values used for
referencein this study

Failurerate A Repair rate u
(hour?) (hour?)
Node 0.0009 0.0091
Edge 0.0300 0.1700

From Table 1, it is easy to derive the steady-state
values p,, and p,, of the links and nodes availa-
bilities, respectively, obtained by the well-known
expression u/(u+ A1) (Henley & Kumamoto,
1991; Kuo & Zuo, 2003; Rausand & Heyland,
2004):

Pe = 0.85, D)
P = 0.91. 2

These values will serve as reference when study-
ing the influence of transients for the whole sys-
tem’ s availability.

2.3. Exponential distributions

When the failure and repair distributions are ex-
ponentials, one can use the well-known formula
(Kuo & Zuo, 2003; Rausand & Heyland, 2004)
for the average availability A(t)

A(t) = /’LL-F A e— A+t 3

+u A+ u
Application of (3) for the values of Table 1 gives
the time-dependent average availabilities p(t)
and p(t) of links and nodes, respectively:

_ 8 15 /5

p(t) = 100 + 100 € : (4)
— 91 . 9 _-t/100

p(t) = 100 + 100 € ' (5)

2.4. Gammadistributions

Gammadistributions (Rausand & Heyland, 2004,
Pham, 2006) are, after exponentials, anong the
most often used distributions in reliability theory.
We consider in the following the gamma distribu-
tion defined by its density

( A)u tu—l _
a o e alt’ (6)

f@®) =

where a isthe so-called shape parameter, and I is

the Euler gamma function. The definition (6) en-
sures that the Mean Time To Faillure (MTTF) is
till equal to 1/1. Severa works have studied the
time-dependent availability when the lifetime
obeys a gamma distribution (Pham-Gia & Turk-
kan, 1999; Rao & Naikan, 2015; Sarkar &
Chaudhuri, 1999; Tanguy et a., 2019; Tanguy,
2022b). It ispossible to express p(t) and p(t) ex-
actly and analytically in some cases, for instance
when a isan integer, apossibility that we shall use
in the following.

3. Calculation of two-terminal reliability of
Walter configuration

Caculation of the reliability or availability of a
meshed structure — such as that described in Fig-
ure 1 — can be quite demanding, especially when
all elements of the systems are distinct and the un-
derlying graph representing the system is not of
the series-parallél type. For a non-series-parale
graph, exact formula are often very complicated
or cumbersome, with a number of terms that in-
creases greatly with the number of components.
Textbooks mostly limit themselves to the bridge
structure (Kuo & Zuo, 2003; Rausand & Heyland,
2004). However, for a few recursive families of
graphs, it is possible to obtain the results easily
because of an inherent factorization of the relia-
bility (Tanguy, 2007).

3.1. Recursive analysis of Walter
configuration

It is possible to represent the graph of Figure 1 in
adightly different way, as displayed on Figure 2.
The gist of the method is to reproduce the same
network, by adding afew virtual links and nodes,
the reliabilities of which are equal to 1 (they are
perfect, and thus never fail). This means that all
things considered, the behaviour of the whole sys-
tem is not modified.

Figure 2. First modified representation of the graph
of Figure 1. Note the addition of perfect nodes and
perfect links between S and A, and G and T.
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In asecond step, we add extranodes and links, the
reliabilities of which are zero; they do not function
(see Figure 3).

Figure 3. Second modified representation of the
graph of Figure 1, after adding phantom nodes and
links (in red). A structural recursiveness appears
(Beichelt & Spross, 1989).

After the second step, one can observe the recur-
sive structure of the graph (Beichelt & Spross,
1989; Prékopa et al., 1991). It turns out that this
recursive architecture has been solved for arbi-
trary probabilities of operations for all elements
(nodes and links). The two-terminal reliability be-
tween S and T is then obtained via a product of
15 x 15 matrices (Tanguy, 2009).

3.2. Complete analytical result

Using the general expression of these matrices
with individual availabilities— ps, pr, etc. for the
nodes, p;,...,p14 for thelinks—we have been able
to compute the exact two-termina Relz2(S — T).
Since the full expression contains 917 terms, we
only report in the following the expressions for
identical links or nodes, with only two variables p
and p, not 23 asin the genera case. The full ex-
pression may be obtained from the author.

3.3. Reault for identical links and nodes

Considering identical nodes and identical links al-
lows for a much ssimpler expression of the two-
terminal availability between source S and desti-
nation T. We aso give in equations (7) to (9) the
results when either nodes or links are perfect:

Relz(p, p) = 3p*p® + (8p° — 9p® + 2p”)p°®

+ (13p® — 38p” + 25p® — 5p°)p’

+ (14p” — 89p?® + 151p° — 94p° + 20p*1)p®
+ (6p® — 78p° + 278p1° — 428p?

+ 326p12 — 122p13 + 18p'*)p? (7)

Rel2(p, p = 1) = 3p* + 8p> + 4p°® — 22p”

— 58p® + 68p? + 184p™® — 408p"!
+326p'2 — 122p™3 + 18p™ (8)
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Rel2(p = 1,p) = 3p° + p® —5p” +2p°.  (9)

It isworth noting that by contrast to what happens
for the all-terminal reliability, Relz2(p, p) does not
factorize in functions of p and p (Eid, 2021; Tan-
guy, 2022a). Furthermore, all expressions sim-
plify to 1 when links and nodes are perfect, as ex-
pected.

3.4. Steady-state unavailabilities

Itisin general easier to deal with unavailabilities
defined by U = 1 — Relz, instead of availabilities.
Considering the steady-state values for nodes and
links given in equations (1) and (2), one gets (the
subscript oo indicates a steady-state value)

(Us)tora = 0.32302070840136, (10)

whereas if one considers perfect nodes (p = 1),

(U)jinks = 0.06389109843798, (12)
while for perfect links (p = 1),
(Uoo)nodes = 0.20333435421525. (12)

It isimportant to stress that the sum of equations
(11) and (12) does not give (10), because of cor-
relations between the variablesp and p in (7). Be-
sides, these numerical values show that nodes
contribute to agreater unavailability of the system
at very long times. Before considering what hap-
pens at shorter times, wefirst investigate what can
be said about the performance indices of each el-
ement, for which the complete expression of
Rel2(S — T) isrequired.

4. Performanceindicesfor end-to-end
availability for Walter configuration

V arious performance measures have been defined
to assess the criticality of each element of the sys-
tem to the latter’ s operation. The most popular are
Birnbaum, Improvement Potentia (IP), Risk
Achievement Worth (RAW), Risk Reduction
Worth (RRW), Ciriticality Importance (ClI),
Fussell-Vesely (FV), etc. (Rausand & Heyland,
2004). Their roleisto rank or sort all elements by
their relative importance. These performance in-
dices depend on each element (node or link),
through itsindividual availability aswell asitslo-
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cation in the system. It isworth stressing that sev-
eral of these measures can be deduced directly
from the structure function of the system, which
is formally identical to Rel2(S — T) (Rausand &
Heyland, 2004). In most studies, only the asymp-
totic availabilities are considered.

A similar study of the ranking of components of a
system has been performed for the al-terminal
availability of the Eid configuration (Eid, 2021;
Tanguy, 2022a). In that case, the role of nodes and
links were quite distinct, and all nodes had the
same importance. In the present work, thisis not
true anymore when the two-terminal availability
IS under consideration.

4.1. Birnbaum importance factor

The Birnbaum importance factor — probably the
most used index— is defined by the derivative of
the system availability with respect to the availa-
bility of the component. The exact knowledge of
Rel2(S — T) allows therefore to compute every
Birnbaum factor 1®). Again, the full expressions
are too lengthy to be given here. The numbers of
terms are 917 for ps and p (of course), but de-
crease to 607 for p, and 582 for p,. Only after the
differentiation has been performed can one again
assume that all nodes and links are identical, and
obtain simpler expressions of the Birnbaum index.
They are:

1®)(ps) = 3p*p* + (8p° — 9p® + 2p”)p° +
(13p® — 38p” + 25p® — 5p°)p® + (14p” —
89p8 + 151p° — 94p° + 20p* ) p” + (6p® —
78p° + 278p10 — 428p1t + 326p12 —
122p* + 18p**)p°®} (13a)
I®)(pr) = 3p*p* + (8p° — 9p® + 2p”)p° +
(13p® — 38p” + 25p® — 5p°)p® + (14p” —
89p® + 151p° — 94p° + 20p* ) p” + (6p® —
78p° + 278p10 — 428p1t + 326p12 —
122p13 + 18p1%)p8} (13b)
1®)(p,) = 2p*p* + (7Tp° — 9p°® + 2p7)p° +
(10p® — 34p” + 25p® — 5p°)p® + (12p7 —
78p® + 138p° — 90p1° + 20p'1)p” + (6p® —
78p° + 278p10 — 428p1t + 326p12 —
122p13 + 18p1H)p8 (13c)
I®)(pp) = p*p* + (4p°> — 6p® + 2p7)p°> +
(9p° — 24p” + 18p® — 5p”)p° + (11p’ -
66p® + 106p° — 63p1° + 13p'1)p” + (6p® —

78p2 + 278p1° — 428pl! + 326p12 —

122p13 + 18p1H)p8 (13d)

1®)(pc) = p*p* + (6p° — 4p®)p° + (11p° —
36p7 + 25p8 — 5p?)p® + (12p” — 82p% +
144p° — 92p*° + 20p*1)p” + (6p® — 78p° +
278p10% — 428p'! + 326p'? — 122p13 +

18p'*)p® (13¢)

1®(pp) = 2p*p* + (5p> — 7Tp® + 2p7)p> +
(10p® —31p” + 22p® — 5p?)p° + (13p” —
84p® + 145p° — 92p° + 20p* ) p” + (6p® —
78p° + 278p10 — 428p! + 326p12 —

122p13 + 18p1H)p8 (13f)

1®)(pg) = p*p* + (4p°> — 3p®)p° + (9p° —
27p” + 17p® — 3p°)p® + (11p7 — 69p® +
117p° — 72p*° + 15p'1)p7 + (6p® — 78p° +
278p10% — 428p't + 326pt? — 122p13 +

18p™*)p® (13g)

1®)(pr) = (2p° — p®)p® + (9p® — 17p” +
6p®)p® + (14p” — 81p® + 128p° — 75p1° +
15p)p7 + (6p% — 78p° + 278p1° —

428p™1 + 326p'% — 122p13 + 18p™4)p® (13h)

I®)(pg) = 2p*p* + (4p°> — 6p° + 2p")p° +
(7Tp°® = 21p7 + 12p® — 2p°)p® + (11p” —
74p8 + 128p° — 80p1° + 17p1)p7 + (6p® —
78p° + 278p10 — 428p!t + 326p12 —
122p13 + 18p1H)p8 (13i)
1®)(p,) = 2p°p° + (5p* — 8p° + 2p°®)p® +
(5p° — 26p° + 22p” — 5p®)p” + (6p° —

50p7 + 110p® — 82p° + 20p'%)p® + (2p7 —
35p8 + 160p° — 299p1° + 264p1t — 111p12 +
18p*3)p? (13))

1®)(p,) = p*p° + (4p* — 4p°)p® + (5p° —
25p° +23p” — 5p®)p” + (4p° — 44p” +
99p8 — 78p? + 20p1%)p® + (2p7 — 46p8 +
193p? — 333p10 + 280p1t — 114p'2 +

18p*3)p? (13Kk)

1®)(p3) = p*p° + (3p* — 3p°)p® + (4p° —
22p°® + 17p” — 3p®)p” + (5p°® — 37p’ +
84p® — 63p° + 15p1%)p® + (5p” — 53p® +
193p°® — 325p10 + 273p1t — 112p12 +

18p*%)p° (131)
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1®)(p,) = p°p° + (4p* — 3p°)p® + (8p° —
26p® + 17p” — 3p®)p’ + (8p°® — 60p” +
109p8 — 70p° + 15p1%)p® + (3p” — 55p8 +
224p° — 372p10 + 299p11 — 117p12 +
18p*3)p? (13m)
I®)(ps) = (3p* — 5p° + 2p®)p°® + (5p° —
15p® + 15p” — 5p®)p” + (7Tp°® — 41p’ +

72p® — 51p° + 13p19%)p® + (5p”7 — 58p® +
205p° — 330p10 + 271p!t — 111p'2 +
18p'3)p° (13n)
I®)(ps) = p°p°> + (2p* — 6p° + 2p®)p® +
(5p° — 17p° + 18p” — 5p®)p” + (7Tp°® -

47p7 + 95p® — 75p° + 20p1%)p® + (3p” —
38p® + 155p° — 280p10 + 250p1t — 108p12 +
18p*3)p? (130)

1®)(p;) = (3p* — 2p°)p® + (7p® — 25p° +
21p7 — 5p®)p” + (7Tp® — 53p7 + 106p® —
79p° + 20p1%)p® + (3p” — 38p® + 163p° —
296p10 + 260p!! — 110p'2 + 18p™3)p° (13p)

1®)(pg) = (2p* — p°)p°® + (6p° — 14p° +
6p7)p’ + (8p® —59p” + 106p® — 69p° +
15p1%)p8 + (2p7 — 41p® + 182p° — 322p™° +
273p't — 112p12 + 18p'3)p°® (130)

1®)(pg) = (p* — p°)p® + (6p° — 10p°® +
4p”)p” + (9p°® — 53p” + 84p® — 50p° +
10p*%)p8 + (4p” — 61p® + 226p° — 361p™° +
288p1l — 114p*? + 18p'3)p° (13r)

1®)(py1o) = p3p° + (3p* — 5p° + 2p®)p° +
(8p® — 21p® + 16p” —5p®)p” + (8p° —

55p7 + 93p® — 58p? + 13p1%)p8 + (4p” —
58p® + 223p° — 363p1® + 291p1t — 115p1? +
18p*?)p° (139)

1®)(p1;) = p3p> + (2p* — 4p°® + 2p®)p° +
(5p° — 17p® + 15p” —5p®)p” + (7p® —

48p” + 85p® — 56p° + 13p1%)p® + (3p” —
52p8 + 210p° — 352p10 + 288pl! — 115p12 +
18p*?)p° (13t)

1®)(py,) = 2p3p° + (3p* — 6p° + 2p®)p° +
(3p® — 15p® + 10p” — 2p®)p” + (5p° —

48p7 + 103p8® — 73p° + 17p1%)p® + (3p” —
54p8 + 213p% — 357p10 + 292p!! — 116p12 +
18p*3)p? (13u)
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1®)(py3) = p*p® + (6p° — 12p°® + 4p7)p” +
(11p® — 62p7 + 99p® — 59p° + 12p1%)p8 +
(6p” — 70p® + 247p° — 386p'° + 302p*t —
117p1? + 18p13)p? (13v)

I®)(py4) = 2p3p> + (4p* — 6p° + 2p®)p° +
(5p° — 21p® + 12p” — 2p®)p” + (6p° —

55p7 + 114p8 — 77p° + 17p1%)p® + (3p” —
43p® + 186p° — 332p1° + 281plt — 114p*2 +
18p*)p°. (13w)

Here again we seethat the expressions have mixed
contributions from the two variables p and p
which can be time-dependent.

We have ranked the 23 parameters according to
the Birnbaum index when the availabilities have
their steady-state values, deduced from (1) and
(2): 0.85 for links and 0.91 for nodes. The results
aregivenin Table 2; thelist of components sorted
by decreasing importanceis (ps and pr are equiv-
alent, of course). Different colours are used for
nodes (blue) and links (violet).

1 P14y P1,Par PEr PBy P10
P8y PeyP131P7:y P9y Ps-

P12: P2, P11, P3,

Table 2. Birnbaum importance index for steady-state
availabilities (0.85 for links and 0.91 for nodes)

Component Birnbaum importance factor
Ps 0.74393328747103262664
pr 0.74393328747103262664
Pa 0.26333393407261324265
o 0.21733574589545803622
Pec 0.20664782846623041385
P 0.20441697276285038447
Dia 0.17391999915238775907
D1 0.16454665926328098204
D4 0.16022199561232842752
PE 0.15905456597758160579
Ps 0.13943641196591197341
P1o 0.13611988634670647377
P12 0.11423830510275209527
12 0.08777557939567974825
P11 0.07419140283146072724
D3 0.05752211328857445413
Pr 0.04955841196543736364
Ds 0.03097058413067667711
D6 0.02987899928630222520
D13 0.02939563654635550653
ps 0.02766504542418655675
Do 0.02221788403848708225
Ps 0.01796327868123634270
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Whilethefirst six elements are nodes, one can ob-
serve that node F trails after eight links. Another
interesting feature of the results of Table 2 is the
huge difference between the Birnbaum indices for
ps (or pr) and ps: afactor larger than 40. That
means that a greater attention should be exercised
on thefirst elements of the above list, for the sake
of maintenance and resilience policies in order to
ensure or improve the system performance.

The variations of the Birnbaum factors have been
plotted in Figure 4 for p = p,, = 0.91, while p
may vary between 0 and 1. One can notice that the
rankings do not vary very much when the availa
bilities remain larger than their asymptotic value
p, = 0.85.

0.30

0.25
0.20
g 015
0.10
0.05

0.00

0.0 0.2

Figure 4. Birnbaum factorsfor p = p,, = 0.91.

The variations of the Birnbaum factors have also
been plotted in Figure5for p = p,, = 0.85, while
p may vary between 0.8 and 1. Again, the rank-
ings do not change drastically when the avail abil-
itiesremain larger than p_, = 0.91.

0.30
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0.20 —-——“/——"— %
@ 015 %”‘4’2
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| —]
0.00L
0.80 0.85 0.90 0.95 1.00
P

Figure5. Birnbaum factorsfor p = p,, = 0.85.

4.2. Risk Achievement Worth

The Risk Achievement Worth (RAW) is propor-
tional to the unavailability of the system when el-
ement i fails (Rausand & Heyland, 2004), so
that (we omit here the common denominator
1 - Relzo(S = T))

IRAW)(i) o< 1 — Rel2(S — T;0;). (14)
For this importance measure, one can derive
lengthy expressions again when individua avail-
abilities are kept throughout the calculations. Re-
turning to two families of nodes and links, smpler
expressions similar to equations (13ato 13w) can
be found.

|RAM(ps) o 1 (158)

IRAW)(pr) o 1 (15b)

IRAW)(p,) & 1 — p*p® — p°p® + (=3p° +

4p7)p” + (=2p7 + 11p® — 13p° + 4p'%)p®
(15c¢)

IRAW)(pp) o< 1 — 2p*p® + (—4p® + 3p°®)p® +
(—4p® + 14p” — Tp®)p” + (=3p” +23p°® —
45p° + 31p10 — 7p1)p8 (15d)

IRAW)(pc) o 1 — 2p*p® + (—2p° + 5p° —
2p7)p° + (=2p°® +2p")p” + (=2p” + 7p° -
7p° +2p'%)p® (15¢)

|(RAW)(pD) o<1 — p4p5 + (_3p5 + 2p6)p6 +
(=3p°® + 7p” —3p®)p” + (—p” + 5p® — 6p° +
2p'%)p° (15f)

IRAWY () oc 1 — 2p*p® + (—4p® + 6p° —

2p7)p® + (—4p°® + 11p” — 8p® + 2p°)p’ +

(—=3p” + 20p® — 34p® + 22p'® — 5p'*)p®
(15g)

|RAW (o) o 1 — 3p*p® + (—6p° + 8p° —
2p7)p® + (—4p® + 21p” — 19p® + 5p°)p” +
(8p® — 23p° + 19p'® — 5p'*)p® (15h)

IRAW)(pg) o 1 — p*p® + (—4p® + 3p©)p® +
(—6p°® + 17p” — 13p® + 3p°)p’” + (—3p” +
15p8 — 23p? + 14p10 — 3p11)p8 (15i)

IRAW)(p,) o 1 —p*p® + (=3p° +p®)p® +
(=8p® +12p” — 3p®)p” + (=8p’ +39p° —
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41p° + 12p1%)p® + (—4p® + 43p° — 118p° +
129p1t — 62p12 + 11p13)p? (15))

IRAW)(p,) o 1 — 2p*p® + (—4p® + 5p° —
2p7)p® + (—8p°® + 13p” — 2p®)p” +

(—10p” + 45p8 — 52p° + 16p'9)p8 +

(—4p® + 32p° — 85p10 + 95p1t — 46p12 +
8p'%)p° (15Kk)

|RAW(p3) oc 1 — 2p*p® + (=5p° + 6p® —
2p7)p® + (—9p° + 16p” — 8p® + 2p°)p” +
(=9p” +52p® — 67p° + 31p™® — 5p'1)p°® +
(—p® + 25p° — 85p1% + 103p!t — 53p12 +
10p*)p? (151)

IRAW)(p,) o< 1 — 2p*p® + (—4p® + 6p°® —
2p7)p® + (—=5p°® + 12p” — 8p® + 2p°)p” +
(=6p” +29p° — 42p°® + 24p™® — 5p'1)p°® +
(—3p® + 23p° — 54p1% + 56p!t — 27p1? +
5p**)p° (15m)

IRAW(ps) o< 1 — 3p*p> + (=5p° + 4p®)p® +
(=8p°® +23p” — 10p°®)p” + (—7p’ + 48p® —
79p9 + 43p10 _ 7p11)p8 + (_p8 + 20p9 _
73p10 + 98pt!t — 55p1% + 11p13)p? (15n)

IRAW)(pg) & 1 — 2p*p> + (—6p> + 3p®)p® +
(=8p°® +21p” — Tp®)p” + (=Tp” +42p° -
56p° + 19p1%)p8 + (—3p® + 40p° — 123p1° +
148p!! — 76p12 + 14p13)p? (150)

IRAW)(p;) o< 1 — 3p*p® + (—5p° + 7p° —
2p”)p® + (—6p° + 13p” — 4p®)p” + (=7p’ +
36p® — 45p° + 15p1%)p8 + (—3p® + 40p° —
115p1° + 132p™t — 66p*2 + 12p*3)p°  (15p)

IRAW(pg) o< 1 — 3p*p® + (—6p° + 8p® —
2p”)p® + (=7p® + 24p” — 19p® + 5p°)p” +
(=6p” + 30p°® — 45p° + 25p™® — 5p'1)p® +
(—4p® + 37p° — 96p1° + 106p*! — 53p1?2 +
10p*3)p°® (150)

IRAW(pg) o 1 — 3p*p> + (=7p> + 8p® —
2p7)p® + (=7p® + 28p” — 21p® + 5p°)p” +
(—5p7 + 36p® — 67p° + 44p*° — 10p*1)p® +
(—2p® + 17p° — 52p1° + 67p't — 38p12 +
8p'%)p° (15r)

IRAW)(py ) o 1 — 2p*p° + (=5p° + 4p®)p® +
(=5p° +17p” — 9p®)p” + (—6p” + 34p° —
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58p9 + 36p10 _ 7p11),08 + (_2p8 + 20p9 —_
55p'® + 65ptt — 35p2 + 7p13)p? (15s)

IRAW(py1) o 1 — 2p*p> + (—6p° + 5p®)p® +
(=8p° +21p” — 10p°®)p” + (—7p’ + 41p® —
66p9 + 38p10 _ 7p11)p8 + (_3p8 + 26p9 —
68p1° + 76p't — 38p1? + 7p13)p? (15t)

|RAW) (p,,) o< 1 — p*p® + (—5p° + 3p©)p° +
(—10p® +23p” — 15p® + 3p°)p” + (—9p” +
41p°® — 48p° + 21p'° — 3p™)p® + (=3p° +
24p9 _ 65p10 + 71p11 _ 34p12 + 6p13)p9
(15u)

|RAW)(py3) o< 1 — 3p*p® + (=7p°> + 9p° —
2p”)p® + (=7p® + 26p” — 21p® + 5p°)p” +
(=3p” +27p® — 52p° + 35p'? — 8p'1)p® +
(8p9 _ 31p10 + 42p11 _ 24p12 + 5p13)p9
(15v)

IRAW(py4) o< 1 —p*p® + (—4p° + 3p©)p° +
(=8p°®+17p7 — 13p® + 3p°)p” + (=8p’” +
34p8 _ 37p9 + 17p10 — 3p11)p8 + (_3p8 +
35p% — 92p'% + 96p!! — 45p12 + 8p13)p°.
(15w)

One can then evauate the ranking when the
steady-state availabilities are taken into account.
The corresponding values are listed in Table 3.
The variations of the RAW factors are aso dis-
played in Figures 6 and 7, when either the nodes
or links' availabilities take their steady-state val-
ues. As aready seen for the Birnbaum index, the
rankings do not change much when p and p
change. There are simply groups of components
of comparable importance.

0.70

075 080 0.85

p
Figure 6. RAW factorsfor p = p,, = 0.91.
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Figure 7. RAW factorsfor p = p,, = 0.85.

Table 3. Risk Achievement Worth index for steady-
state availahilities (0.85 for links and 0.91 for nodes)

Component RAW importance factor

Ps 1

Pr 1

0a 0.56265458840743836058
o 0.52079623716622712272
Pc 0.51107023230562998637
D6 0.50904015361555415963
D1a 0.47085270768088990497
PE 0.46776036344095957103
D1 0.46288536877514914449
Da 0.45920940467183947316
oy 0.44990784329034020556
P10 0.43872261179606081247
D12 0.42012326773869959074
D2 0.39762995088768809577
P11 0.38608340080810192791
D3 0.37191450469664859577
o 0.36811886328990831067
Ds 0.34934570491243548530
De 0.34841785779471720118
D13 0.34800699946576249031
Dy 0.34653599701191888300
Do 0.34190590983407432967
Ds 0.33828949528041120105

One observes that the order of components is
nearly the same as for the Birnbaum index, the
node pz gaining two places:

1 P14, 1P1: D4, 1P1o:
P81 P61 P13+ P71 Pos Ps-

P12: P2, P11, P3:

4.3. Risk Reduction Worth

The Risk Reduction Worth (RRW) is inversely
proportiona to the unavailability of the system
when element i works perfectly (Rausand & Hoy-

land, 2004), so that (omitting the common prefac-
tor1 — Rel2(S - T))

IRRW)(i) o 1/(1 — Rel2(S - T;1;)). (16)
One can derive again lengthy expressions when
individual availabilities are kept throughout the
calculations. With two families of identical nodes
and links, ssmpler expressionssimilar to equations
(13a) to (13w) are obtained; they read

1/1RRW(pg) o< 1 — 3p*p* + (—8p° + 9p® —
2p7)p® + (—13p° + 38p” — 25p® + 5p°)p® +
(—14p” + 89p® — 151p° + 94p1° —

20p)p7 + (—6p® + 78p° — 278p*° +
428pt — 326p12 + 122p'3 — 18p1*)p® (17a)

1/1RRW(pr) oc 1 — 3p*p* + (—8p° + 9p°® —
2p7)p® + (—13p° + 38p” — 25p® + 5p°)p® +
(—14p” + 89p® — 151p° + 94p1° —

20p)p7 + (—6p® + 78p° — 278p*° +
428pt — 326p12 + 122p'3 — 18p1*)p® (17b)

1/1®W(p,) o« 1 — 2p*p* + (—p* — Tp° +
9p° —2p”)p> + (—p° — 10p°® + 34p’ -

25p® + 5p°)p® + (=3p°® — 8p” + 78p°® —
138p? + 90p*° — 20p't)p” + (—2p” + 5p® +
65p° — 274p10 + 428p1! — 326p1? +
122p13 — 18p1*)p8 (17c)
1/1®W(pg) o< 1 — p*p* + (—2p* — 4p® +
6p° — 2p”)p° + (—4p°® — 6p°® +24p” —

18p® + 5p°)p°® + (—4p® + 3p” + 59p°® —
106p° + 63p*° — 13p*1)p” + (—3p” + 17p® +
33p° — 247p1° + 421p1t — 326p1? +
122p13 — 18p1*)p8 (17d)
L/IGRW(pc) o 1 — p*p* + (—2p* — 6p° +
4p®)p° + (—2p° — 6p° + 34p” — 25p® +
5p?)p® + (—2p° — 10p” + 82p® — 144p° +
92p'® — 20p')p” + (=2p” +p° + 71p° -
276p10 + 428p't — 326pt? + 122p13 —
18p'*)p® (17¢)
1/1®W(pp) o 1 — 2p*p* + (—p* — 5p° +
7p® —2p”)p°> + (—3p° — 8p° + 31p’ -

22p® + 5p°)p® + (=3p°® — 6p” + 81p® —
145p° + 92p'% — 20p'!)p” + (—p” — p°® +
72p° — 276p1° + 428p1! — 326p1? +

122p13 — 18p1*)p® (17f)
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/N1®W(pg) o 1 — p*p* + (—2p* — 4p® +
3p°)p® + (—4p°® — 3p® + 25p7 — 17p® +
3p?)p® + (—4p°® + 61p® — 115p° + 72p10 —
15p)p7 + (—3p7 + 14p® + 44p° — 256p1° +
423pt — 326p12 + 122p'3 — 18p14)p® (17g)

VIGRW)(p) o< 1 + (=3p* — 2p° +p®)p° +
(=6p® — p® + 15p” — 6p°)p® + (—4p°® +

7p7 +62p® — 123p° + 75p1° — 15p1 ) p” +
(2p® + 55p° — 259p1° + 423p!! — 326p12 +
122p13 — 18p1H)p8 (17h)

UNERM(pg) o 1 —2p*p* + (—p* — 4p° +
6p° — 2p”)p° + (—4p° — 4p® + 21p7 -

12p® + 2p°)p® + (—6p°® + 6p” + 61p® —
125p° + 80p'° — 17p1)p” + (—3p” + Wp® +
55p° — 264p10 + 425pt — 326p12 +
122p13 — 18p1H)p8 (171)
1/IRRW)(p,) & 1 + (—2p3 — p*)p® + (—5p* +
5p° — p®)p® + (=5p° + 18p°® — 10p” +
2p®)p7 + (—6p°® + 42p” — T1p® + 41p° —
8p1p8 + (—2p7 + 31p® — 117p° + 181p1° —
135pt! + 49p12 — 7p13)p° (17))

1/IRRW)(p,) o« 1 + (—p3 — 2p*)p5 + (—dp* +
5p° — 2p7)p® + (=5p° + 17p°® — 10p” +
3p®)p” + (—4p® + 34p” — 54p® + 26p° —
4p10)p8 + (—2p7 + 42p® — 161p° + 248p*° —
185p!! + 68p!2 — 10p!3)p? (17K)

1/1IGRW(p3) o 1 + (—p* — 2p*)p° + (—=3p* —

2p° +6p° — 2p”)p® + (—4p° + 13p°® —p’ -

5p® +2p°)p” + (=5p° + 28p” — 32p°® —

4p9 + 16p10 — 5p11)p8 + (_5p7 + 52p8 —

168p° + 240p'° — 170p!t + 59p12 — 8p12)p|9)
17

1/1®RW(p,) o 1+ (=p® — 2p*)p® + (—4p* —
p> + 6p° —2p7)p® + (—8p° + 21p® — 5p” -
5p® + 2p°)p” + (—8p° + 54p” — 80p°® +
28p9 + 9p10 — 5p11)p8 + (_3p7 + 52p8 —
201p° + 318p*° — 243pt + 90p*? —
13p*)p? (17m)
1/1RRW(ps) o< 1 — 3p*p> + (=3p* +

2p®)p® + (—5p° + 7p® + 8p” — 5p®)p” +
(—=7p® + 34p7 — 24p® — 28p° + 30p1° —
7p)p8 + (—5p7 + 57p® — 185p° + 257p1° —
173pt +56p12 — 7p13)p°® (17n)
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1/1RRWM(pg) oc 1+ (—p® — 2p*)p® + (—2p* +
p®)p® + (=5p°> + 9p° + 3p” — 2p®)p” +
(—=7p® +40p” — 53p® + 19p° — p'%)p® +
(—=3p” + 35p% — 115p° + 157p1°% — 102p*! +
32p'? — 4p"3)p? (170)

1/1RRW(p;) o< 1 — 3p*p® + (=3p* — 3p® +
7p® —2p”)p® + (=7p°> + 19p°® — 8p” +

p®)p” + (=7p® + 46p” — 70p® + 34p° —
5p19p8 + (—3p” + 35p% — 123p° + 181p1° —
128p1t + 44p12 — 6p13)p° (17p)

1/1RRW(pg) o< 1 — 3p*p® + (=2p* — 5p° +

8p° — 2p7)p® + (—6p° + 7p°® + 18p” —

19p® + 5p°)p’ + (—8p® + 53p” — 76p® +

24p9 + 10p10 _ 5p11)p8 + (_2p7 + 37p8 —

145p° + 226p1° — 167p!!t + 59p'% — 8p13)p?
(170)

1/1®RW)(pg) o< 1 — 3p*p® + (—p* — 6p° +
8p° — 2p”)p® + (—6p° + 3p° + 24p’ —

21p® +5p°)p” + (—9p® + 48p” — 48p°® —
17p° + 34p1° — 10p*1)p® + (—4p” + 59p8 —
209p° + 309p10 — 221p!! + 76p12 —
10p*)p? (a7)
1/1GRW(p, ) o 1+ (—p° — 2p*)p° +

(—3p* + 2p®)p® + (—8p° + 16p° + p’ —
4p®)p’” + (—8p® + 49p” — 59p® + 23p*° —
7pt1)p8 + (—4p” + 56p°® — 203p° + 308p1° —
226p't + 80p1? — 11p13)p°® (17s)

1/1RRW)(p,4) & 1+ (=p® — 2p*)p° +
(=2p* — 2p® + 3p®)p® + (=5p° + 9p° +
6p” —5p°)p” + (=7p° +41p” — 44p® —
10p® + 25p™® — 7p'1)p® + (=3p” +49p° —
184p° + 284p™0 — 212p™1 + T7p'2 —
11p13)p°® (17t)
1/1RRW)(p,5) & 1+ (=2p° — p*)p° +

(=3p* +p° +p®)p® + (—3p° + 5p° + 13p” -
13p® +3p®)p” + (—5p°® +39p” — 62p° +
25p9 + 4p10 _ 3p11)p8 + (_3p7 + 51p8 —_
189p° + 292p™0 — 221p*1 + 82p'2 —
12p13)p? (17u)
1/1GRW(p,5) < 1 — 3p*p® + (—p* — 7p° +
9p°® — 2p”)p® + (=6p° + 5p° +22p” —

21p® +5p°)p” + (—11p® +59p7 — 72p® +
7p® +23p'® — 8p')p® + (—6p” + 70p° -
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239p? + 355p1° — 260p1t + 93p1? —
13p*)p? (17v)
1/1GRN (p1,) o 1+ (—=2p* — p*)p® +

(—4p* +2p® +p®)p® + (—5p° + 13p° +

5p” — 11p® + 3p°)p’ + (—6p°® + 47p” —
80p® + 40p° — 3p*1)p® + (—3p” + 40p°® —
151p° + 240p*° — 185p1! + 69p1? —
10p*3)p°. (17w)
The corresponding values are listed in Table 4
when the steady-state availabilities are taken into
account. The variations of the RRW factors are
displayed in Figures 8 and 9, when one of the
nodes or links' availabilities takes its steady-state
value. Here again, the variation in rankings do not
change much with p and p. Components of com-
parable importance come in groups.

Table 4. Risk Reduction Worth index for steady-state
availabilities (0.85 for links and 0.91 for nodes)

Component RRW importance factor
Ps 3.9052323127976881318
or 3.9052323127976881318
D1a 3.3677664038955527548
D1 3.3518949037359805525
Da 3.3446224479672253385
0a 3.3408987502793014142
P10 3.3046628992354096887
o 3.2953218912037175271
Pc 3.2849093476298736721
D6 3.2827442652289020558
D12 3.2692028773907447531
PE 3.2393301590606858029
D2 3.2273225489277682830
oy 3.2209082675792041710
P11 3.2062380775632912257
D3 3.1807385526134531842
Ds 3.1409489458363941740
De 3.1393344117655980623
o 3.1391216199070682353
D13 3.1386200129119401608
Dy 3.1360649034374827045
Do 3.1280495962004320680
Ds 3.1218175353137047655

One observes that the order of components has
changed again with respect to the Birnbaum and
RAW indices, and that the values are closer to
each other. A few links gain places:

’ ’p14’p11p4’ ,Pm’ ) ) 1p121 '
P2, 1 P11, P3:Pgr Pes 1P13:P7, P9, Ps-

5

[(RRW)
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p
Figure 8. RRW factorsfor p = p,, = 0.91.
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Figure 9. RRW factorsfor p = p,, = 0.85.
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4.4. Timevariation of performanceindices

From the preceding Sections, one can observe that
different performance indices may provide differ-
ent results. However, within agiven family (nodes
or links), the rankings remain essentially un-
changed, even when p and p change. One can
therefore only expect amarginal influence of tran-
sient availabilities on therel ative ranking of nodes
and of links within their own categories. The rel-
ative influence of nodes and links will be ad-
dressed in the next Section.

4.5. Word of caution about uncertaintieson
effectivefailure and repair rates

Effective failure and repair rates are seldom
known exactly. An uncertainty of 30% on the fail-
ure rates, and 15% on the repair rates would lead
to uncertainties on the steady-state values givenin
(1) and (2); one should have instead

0.7875 < p,, < 0.9030, (18)

0.8686 < p,, < 0.9432. (19)
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Considering uniform distributions of p and p in
theseintervalsfor each of the network’ s elements,
one obtains performance indices in which the as-
sumption of identical nodes/links is relaxed. For
instance, the Birnbaum index’s rank of the first
link (p,) is displayed in Figure 10 for a set of
50000 samples.

10000
8000
6000
4000
2000

4 5 6 7 8 910111213

Figure 10. Histogram of the Birnbaum ranking for
thefirst link (p;) in the case of uncertainty over the
steady-state availabilities (see (18) and (19)).

Even with such a limited uncertainty, it lies be-
tween 4 and 13. This should be kept in mind when
proposing maintenance or resilience policies in
network operations.

5. Relativeinfluence of links and nodes
on total unavailability

We have seen in the previous Sections that the
ranks of nodes or edges of the network do not sub-
stantially vary for various performance indices. It
does not mean, however, that transient effects
cannot be crucial, as aready shown in (Eid, 2021,
Tanguy, 2022a). It isworthwhile to assess the rel-
ative importance of edges and nodes on the total
unavailability, and investigate whether it varies
with time. From equations (10) to (12), we have
in steady-state

((‘;w)_)dl = 0.62947776698761495023,  (20)
oo /tota
Wedins —  19779257730620277452.  (21)

(Uoo)total

This shows that the main contribution to the total
availability comes from nodes. We now have to
check that such a clam is not invalidated at
shorter times.
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5.1. Case of exponential distributions

When dl the failure and repair rates obey expo-
nential distributions, p(t) and p(t) are given by
(4) and (5). Using equations (7), (8), and (9), it is
possible to plot the variations with time of the two
ratios, displayed in Figure 11.

1.0

0.8 { ;s odes
gﬁé‘e‘ﬁ} al
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Figure 11. Time variation of the unavailability ratios
for nodes (blue) and links (violet) for exponential dis-
tributions.

The striking feature of Figure 11 is that the ratios
of unavailabilities strongly change during the mis-
sion time. The conclusion derived from the use of
steady-state values may therefore be misleading:
links actually may contribute moreto the total un-
availability.

5.2. Case of gamma (a = 2) failure
distributions

When all the failure timesfollow gammadistribu-
tion with @ = 2, it is possible to calculate anal yt-
ically the exact values of p(t) and p(t):

85 15 _29¢

P()= 106+ 100 ¢ ™
Viiot 29 V119t
' [COS( 200 )+ Viio sm( 200 )]’ (22)
91 9 127t
p(t) = 100 W e 20000
V1729t 127 . V1729t
[20 cosh ( 20000 ) * V1729 sinh ( 20000 )] (23)

Using (22) and (23) in equations (7), (8), and (9),
one can plot the variations with time of the two
ratios, as shown in Figure 12.
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Figure12. Time variation of the unavailability ratios
for nodes (blue) and links (violet) for failure time
gamma distribution with a = 2.

5.3. Case of gamma (ajipks = 20, &poges = 10)
failuredistributions

When the failure times follow gammadistribution
with Qinks = 20 and Anodes — 10, itisdtill pOSSi-
ble (Tanguy et al., 2019) to express analyticaly
p(t) and p(t), now given by

p(t) =085 +

e~ 1143361 (0310984 c0s(0.0836738 t) +
0.0473057 sin(0.0836738 t)) +

e—00285359¢ (_( 293937 c0s(0.15934 t) +
0.103769 sin(0.15934 t)) +

e~ 109358t (0283138 c0s(0.243529 t) +
0.137739sin(0.243529 t)) +
e=0107054t (_( 260862 c0s(0.308935 t) +
0.187246 sin(0.308935 t)) +

e~0998411¢ (0 229916 c0s(0.381574 t) +
0.216012 sin(0.381574 t)) +

e~0225505t (_0,199202 c0s(0.432857 t) +
0.253279 sin(0.432857 t)) +

e~086625¢ (0 156045 c0s(0.485426 ) +
0.275241 sin(0.485426 t)) +

e~0373866t (_(0 118065 c0s(0.51825 t) +
0.298392 sin(0.51825 t)) +

e~0708737t (0 0680901c0s(0.545738 t) +
0.310262 sin(0.545738 t)) +

e=0539697 t(_0 0261074 cos(0.55704 t) +

0.318121 sin(0.55704 t)) (24)

p(t) = 091+

e 00176533t (0,172709 c0s(0.00253813 t) +
0.0507124 sin(0.00253813 t)) +

e~0-00143016t (_( 151426 c0s(0.00487063 t) +
0.0973163 sin(0.00487063 t)) +

e~0:0149088t (9 117875 cos(0.00680855 t) +

0.136036 sin(0.00680855 t)) +
p=0.00526658t (_(0 0747747 cos(0.00819487 t) +
0.163735 sin(0.00819487 t)) +

00102912t (0 0256167 cos(0.0089173 t) +

0.17817 sin(0.0089173 t)) (25)
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Figure 13. Time variation of the unavailability ratios
for nodes (blue) and links (violet) for failure time
gamma distribution (@i = 20 and apges = 10).

5.4. Time behaviors of aggregate
unavailabilities

As Figure 13 exhibits oscillations, it is worth in-
vestigating the time dependence of al three una-
vailabilities defined in (7), (8), and (9). The vari-
ous configurations corresponding to Sections 5.1,
5.2, and 5.3 are displayed in Figures 14 to 16.
Whileinthefirst two cases the unavailabilitiesin-
crease with time and reach their long-time limits
from below, in the last case, there are overshoots.
This means that the steady-state values of Uota,
Ujinks, @nd Upoqes UNnderestimate the true one dur-
ing the mission time.

0 500

1000 1500 2000 2500 3000

t

Figure 14. Time variation of Uy, for different
configurations. exponentials (orange); gamma

(a = 2) (green); (@jinks = 20 and apgges = 10)
(violet); the steady-state limit is the black dashed line.
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Figure 15. Time variation of U for different
configurations. exponentials (orange); gamma

(a = 2) (green); (@jinks = 20 and apgges = 10)
(violet); the steady-state limit is the black dashed line.
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Figure 16. Time variation of U, yqes fOr different
configurations. exponentials (orange); gamma

(a = 2) (green); (@jinks = 20 and apgges = 10)
(violet); the steady-state limit is the black dashed line.
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The lesson to be learned is that it is not always
safe to consider the steady-state availabilities of
components to assess the end-to-end availability
of asystem, al the more so in the first phases of
operation (the mission time).

6. All-terminal reliability of Walter
configuration

For the sake of comparison with the two-terminal
availability results given in the preceding Sec-
tions, we now consider the all-terminal availabil-
ity for the same configuration shown in Figure 1.
Similar studies on another configuration have a-
ready been performed (Eid, 2021; Tanguy,
2022a), where the al-terminal availability has
been shown to attain values smaller than its steady
state-limit.
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6.1. All-terminal availabilities

The probability that all nodes of the systems are
connected implies that al nodes must be opera-
tional. This means that the al-termina reliability
or availability can be factorized as follows
Rela(total) = Rela(links) Rela(nodes) (26)
Rela(nodes) is very simple, since it corresponds
to aseries system

Rela(nodes) = ps pr pa Ps Pc Pp PE PF Po-
(27)

The calculation of Rela(links) is more compli-
cated. When individual availabilities are consid-
ered (from p; to py4), the final expression totas
2856 terms. Assuming that al links are identical
leads to a much simpler formula

Rela(links) = 647p® — 2862p° + 5360p1° —

5430p't + 3134p'% — 976p'3 + 128p'* (28)
For identical nodes, (27) reduces to
Rela(nodes) = p°. (29)

6.2. Steady-state unavailabilities

Here again it may be simpler to deal with the all-
terminal unavailability U, = 1 — Rela, instead of
Rela. Considering the steady-state values for
nodes and links given in (1) and (2), we find (the
subscripts oo indicate the steady-state value)

(Up). . = 0.60498385816355262,  (30)
=2 /total

whereas

(Uaw);irye = 0.076913686037659746,  (31)
(Uao) pges = 0-5720701998702116.  (32)

These values, larger than those in (10)—<12) since
itismoredifficult to ensurethat all nodes are con-
nected instead of asingle pair of them, show that
nodes contribute again to a greater unavailability
of the system at very long times.



Influence of transients on end-to-end availability for a meshed network

6.3. Birnbaum importance factor

For the all-terminal availability, the Birnbaum im-
portance factor is necessarily the same for identi-
cal nodes, because of (26) and (27). Consequently,
only the links' ranking will be considered in what
follows. From the exact expression of the all-ter-
mina availability, one gets the Birnbaum im-
portance factors, the list of which is given below
for the sake of completeness and for comparison
with equations (13) in Section 4.1. Note that the
common factor p® has been omitted, since it does
not affect the relative ranking of links.

I®)(p,) = 400p” — 1948p8® + 3983p° —
4377p10 + 2726p11 — 912p12 + 128p'3 (333)
I®)(p,) = 367p” — 1845p® + 3863p° —

4315p10 + 2714p't — 912p'% + 128p*3 (33b)

1®)(ps) = 364p” — 1819p8 + 3796p° —
4239p10 + 2674p1t — 904p12 + 128p1® (330)
1®)(p,) = 440p” — 2115p8 + 4261p° —

4608pt0 + 2822p1t — 928p12 + 128p'3 (33d)

I®)(ps) = 306p” — 1574p® + 3384p° —
3894p10 + 2530p1 — 880p12 + 128p™3 (33¢)
I®)(pg) = 295p7 — 1536p° + 3335p° —
3866p1° + 2524p11 — 880p'2 + 128p'3 (33f)
I®(p,;) = 312p7 — 1611p® + 3466p° —

3979p1° + 2572p11 — 888p'2 + 128p'* (33g)

I®)(pg) = 343p” — 1733p8 + 3655p° —
4123p™0 + 2626p!! — 896p12 + 128p'3 (33h)

1B)(py) = 351p” — 1760p° + 3689p° —
41420 + 2630p1! — 896p12 + 128p™3 (33))
I®)(p,o) = 400p” — 1948p?® + 3983p° —

4377p'0 + 2726p1t — 912p'% + 128p*3 (33))

I®)(p,;) = 365p” — 1834p® + 3843p° —
4300p™° + 2710p** — 912p'? + 128p** (33K)

1®)(p,,) = 416p7 — 2042p® + 4178p° —
4566pt0 + 2814ptt — 928p'2 + 128p13 (33))

1®)(pys) = 377p” — 1878p® + 3903p° —
4336p10 + 2718p!t — 912p12 + 128p'3 (33m)

1®)(py,) = 440p” — 2115p® + 4261p° —
4608pt0 + 2822p1t — 928p12 + 128p'3. (33n)

We can rank the 14 links according to the Birn-
baum index when the availabilities have their
steady-state values, deduced from (1), 0.85. The
list, by decreasing importance, is

P14, P4, P10:P1: P12, P13: P31 P9: P11,
le p8’ p51 p7’ p6'

Note that the ordering of the fourteen linksis not
the same as for the two-terminal availability case
in Section 4.1. However, the changes are mar-
ginal, since the same groups of links aggregate at
the beginning and at the end of thelists.

6.4. RAW and RRW performanceindices

It is possible to compute the Risk Achievement
Worth and the Risk Reduction Worth without any
difficulty. Their expression are not given here, it
turns out that the ranking of all linksis exactly the
same as that for the Birnbaum index.

6.5. Fussell-Vesdly performance index

By definition, the Fussell-Vesely performance in-
dex is the probability that at least one minimal
cutset containing element i fails (Pr(D;)), pro-
vided that the whole system fails. In the notation

of (Rausand & Heyland, 2004), namely
Pr(C) = UA!
1P (p;) = Pr(Dy) (34)

Pr(c) ’

The calculations of these indices are more in-
volved, since they cannot be directly obtained
from the availability expression (formally similar
to the structure function). One must first start to
identify the minimal cutsets, which is another po-
tentially complex task, especially when the num-
ber of system elements increases. Here, there are
75 minimal cutsets:

{P1. P10} {D4: D14} {P1, D5, P11} APs: P10: P11}
{26, D11} {P2, D7, P12} {P3. D8 P12},

{ps, D4 Do} {3, P9, P14} {Ps: Do, P13},

{P4, P12, P13} {P12, P13, P14} {P1, D2, D5, D6}
{p2. 05, P6: P10} D2, P3. 7. P8} D2 P4, 7. P13},
{p2, 07, P13, P14} {6 D7, P11, P12}

{p3, P4, Ps, P13} {D3 D5, P13, P14},
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{P3a Po: P12, P13}| {P4a Ps: Do, P12}a {Psa Po: P12, P14},
{p1.ps. 06, 07, D12} D5 P6: P7: P10, P12},

{p2: 3,07, P9, 13}, {P2, P4, 7. Ps. Do},

{p2. 07,08, D9, P14} {P3. D6, P7. P8, P11},
{P4:P6: 07,011, P13} {P6 D7, P11, P13, P14},
{p1.03.Ps: D6, 7, P8} {P1, D2 P5. D6, 7. P13},
{p1.ps. D6, D7, D13 P14} {P3. 5. D6, D7, P8 P10}
{P41 Ps: Pe P7: P1o0: P13}a {PSa Pe6:P7, P10 P13: P14},
{P3a Pe6:P7:P9: P11 P13}1 {P41 Pe: P7,Ps: Do, P11},
{pe. P7. P8, P9, P11, P14} {P1, D3, D4 Ps. D6, D7, D8},
{pli P3:Ps:Pe: P7,Pgs p14}1

{1, 03, Ps: D6, D7, Ps: P13},

{pli P3:Ps:Pe: P7,Pgs p9}a

{1,034 Vs, D6 P7, D13},

{1, 03,95 P, D7, P13, P14},

{pli P3,Ps5:Pe6: P7, Do, p13}1

{1, 04, Ps: D6, D7 Ps: P13},

{1, 05, P6 P7. D5, P13, P14},

{pli P4, PsiPe: P71 Psg: p9}1

{1, 05, P6 P7. D5 Pos P14},

{P1a P4, Ps,Pe6: P7: Do, P13}a

{P1a Ps:Pe6:P7: P9 P13: P14},

{r1,03.P6:P7, D9, P11, P13}

{pli p4—l p6l p7l p81 p9l pll}a

{1, 06,07 P8, D9, P11, P14}

{P3. 4. D5 P, D7, Ps: P10}

{P3a Ps:Pe:P7:Ps: P10, P14},

{ps. s, D6 P7, s, P10, P13},

{ps. 05, P, D7, D5 Dos P10},

{P3a P4, Ps,Pe: P7:P10s P13},

{ps. s, D6, P7, P10 P13: P14}

{p31 Ps:Pe P71 Pos P10 p13}1

{P4. D5, D6, P7, D5 P10: P13}

{PSa Pe6:P7:P8: P10+ P13s P14},

{p4. 05 D6, D7, P58 Do, D10},

{ps. P6: D7, Ps: P9, P10: P14},

{P41 Ps:Pe6:P7: P9 P1o: P13},

{ps. P6: D7, P9, D10) P13 P14},

{ps. 6, D7, P9, D10) P11, P13},

{P41 Pe:P7,P8: P9 P1o: P11},

{pe. p7. D8 P9, D10) P11, P14},

{p31 Ps:PeP7: P9 P11 p13}1

{p4-l Ps:Per D7, Pg) P9, pll}a

{ps: 06,07, D8, D9, D11, P14}

The numbers of cutsets to which the link corre-
sponding to p; occurs are respectively 23, 10, 29,
24, 41, 53, 57, 36, 33, 23, 19, 10, 35, and 24 for
P1, P2,---» P14- ONethen has to compute the prob-
abilities Pr(D;), which are given by the polyno-
miasin equations (35a) to (35n):
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IM(py) x 1 —p —5p3 +9p* +p5 — 11p° —
4p”7 + 37p8 — 47p° + 15p1° + 22p1t —
27p'% + 12p'3 — 2p'4 (35a)
IF)(p,) < 1 —p — p? +p° + 8p” — 9pB —
8p9 + 5p10 + 20p11 _ 26p12 + 12p13 _ 2p14
(35b)

I"(p3) < 1 — p — 4p* + 5p* + 3p° — 10p° +
13p7 — 2p® — 20p° + 17p'° + 10p1t —

21p'% + 11p'3 — 2p™4 (35¢)
1P (py) x 1 —p — 7p* + 15p° — 10p°® +
12p8 — 20p°® + 3p10 + 24p1t — 27p12 +
12p13 — 2p14 (35d)

IF)(ps) x 1 — p — p? — 4p* + 11p* — 3p° —
8p® — 2p” + 33p® — 58p° + 45p10 — 6plt —
15p'% + 10p13 — 2pt* (35€)

IP(pg) o 1 — p — 2p* + p* + 2p* — p° +
2p6 + 4p7 _ 14p8 + 3p9 + 9p10 + 4p11 _
16p'? + 10p13 — 2pt* (35f)
I (p,) x 1 —p —p? —p3 +5p° + 3p°® —
10p13 — 2p1 (350)
I"(pg) < 1 — p — 5p® + 7p* +3p° — 11p° +
13p7 _ 8p8 _ 5p9 + 3p10 + 16p11 _ 22p12 +

11p13 — 2p14 (35h)
1P (po) < 1 — p — 4p° + 2p* + 15p° —
25p° + 13p7 + 12p% — 28p° + 14p1° +
14p't — 22p'2 + 11p13 — 2p* (35i)

I (pro) x1—p— 5p3 + 9p4 + p5 — 1lp6 —
4p”7 + 37p® — 47p° + 15p1° + 22p1t —
27p'% + 12p'3 — 2p'4 (35))
I (py;) x1—p —p? —p*+3p* —3p° +
6p7 + p8 _ 16p9 + 7p10 + 20p11 _ 26p12 +
12pt3 — 2pt4 (35Kk)

P (p1z) x 1 —p —p3 —2p*+p> +7p® +
p7 — 7p8 — 8p9 + 5p10 + 20p11 — 26p12 +
12p13 — 2p14 (351

1"(py3) x 1 —p —p* — 7p* + 18p° —
10p® — p” + 6p® — 17p° + 13p1° + 11p!! —
21p'? + 11p?3 — 2p1 (35m)
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IF(p14) 1 —p — 7p* + 15p°> — 10p° +
12p8 — 20p° + 3p® + 24p1t — 27p1? +
12p13 — 2p14, (35n)
The values of the Pr(D;) /(1 — p)? are displayed
in Figure 17. The modifications of ranks when p
is modified are marginal, apart from those of p,,
and p,, the importance of which decreases when
p goes below 0.6.

L5

0.0
0.0 02 0.4 0.6 0.8 1.0

p
Figure 17. Pr(D;) /(1 — p)? valuesfor p = 0.91.

Another noteworthy result is that, by contrast to
what occurs for the two-terminal availability, the
importance list of the links when p = 0.85 is ex-
actly the same as that of Birnbaum, RAW, and
RRW given in Section 6.3. This makes the cum-
bersome calculations of the Fussell-Vesdly index
of performance appear of limited interest, al the
more so in not so small systems.

6.6. Rdativeinfluence of links and nodes on
total all-terminal unavailability

One can perform for the all-termina availability
the same cal culations of therelative roles of nodes
and links on the total availability, as performed in
Section 5. The results are displayed in Figures 18
to 20, and the al-termina unavailabilities are
again denoted by Uigiars Ulinks, @d Unoges iN Order
to shorten the notations. Note that the asymptotic
limitsarewell separated at 0.127133451578582
for the links, and 0.945595807476167 for the
nodes. When the failure and repair time distribu-
tions are exponentials (Figure 18), there is no
crossing between the two curves. When gamma
distributions are considered, the behaviours ob-
served for the two-termina availability (see Fig-
ures 12 and 13) reappear. Our conclusion is that
for the two- or al-terminal availabilities, great
caution should be exercised when identifying

weak elements of the system based only on p,,
and p,.
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Figure 18. Time variation of the unavailability ratios
for nodes (blue) and links (violet) for exponential
distributions and the all-terminal availability case.
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Figure 19. Time variation of the unavailability ratios
for nodes (blue) and links (violet) for failure time
gamma distribution with « = 2 and the all-terminal
availability case.
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Figure 20. Time variation of the unavailability ratios
for nodes (blue) and links (violet) for failure time

gamma distribution (@i = 20 and aoges = 10)
and the all-terminal availability case.
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6.7. Time behaviours of aggregate
unavailabilities

In this Section, we study, as in Section 5.4, how

the stationary regimeisreached for variousfailure

time distributions. The results are displayed on
Figures 21 to 23.
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Figure 21. Time variation of Uy, for different
configurations. exponentials (orange); gamma
(a = 2) (green); (@jinks = 20 and apgges = 10)
(violet); the steady-state limit is the black dashed line.
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Figure 22. Time variation of Uj;s for different
configurations. exponentials (orange); gamma
(@ = 2) (green); (inks = 20 and pgges = 10)
(violet); the steady-state limit is the black dashed line.
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Figure 23. Time variation of U, oq4es fOr different

configurations. exponentials (orange); gamma

(@ = 2) (green); (inks = 20 and pgges = 10)

(violet); the steady-state limit is the black dashed line.
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One can observe the same behaviours as those ob-
served for the two-terminal availability. The con-
clusions to be drawn are therefore the same: tran-
sient effects may be important and should not be
cursorily overlooked. They might indeed lead to
underestimates to the true unavailability of sys-
tems.

7. Conclusion

We have considered a meshed network proposed
by Walter, Esch, and Limbourg (Walter et al.,
2008), for which the performance measure is the
end-to-end availability between a source and a
destination. The exact expression of thisavailabil-
ity has been obtained for arbitrary components
availabilities, which allowed the assessment of
several performance indices such as Birnbaum,
Risk Achievement Worth, Risk Reduction Worth,
and Fussell-Vesely in order to know on which el-
ement(s) of the system maintenance and resilience
practitioners should focus their attention.

Our most important result has been to demonstrate
that transient effects can be significant. Mainte-
nance and resilience studies often use the steady-
state values of each element’s availability. In the
cases of non-steady-state availabilities and non-
exponential failure distributions, the connection
unavailability may be temporarily higher than its
steady-state value. At different instants of the mis-
sion time, nodes and links could alternatively be
held responsible for a mgjority of outages. The
lesson learned from the present study is that there
is no fixed guilty party. Great caution should
therefore be exercised when trying to optimize the
operation of a system without considering transi-
ent effects, which should not be overlooked.
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