Czasopismo
2022
|
No. 64 (2)
|
376--386
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Approximately one-year water level records were utilized for examining the tidal dynamics and tidal asymmetry at the Shatt Al-Arab river estuary. The harmonic and the tidal skewness, two traditional methods in quantifying tidal asymmetry in tidal systems, were used. The water level measurements revealed a presence of a tidal wave attenuation when propagating further towards the inland direction, with notable reductions in the tidal range. The results of the harmonic analysis indicated that the diurnal and semi-diurnal constituents experience considerable damping towards the upstream direction. The largest constituent was M2, followed by K1, O1, and S2. The largest shallow water constituent was MK3, followed by M4, MS4, MN4, and M6. The tidal form number ranged from 0.68 to 0.7 along the estuary; then, mixed, mainly semi-diurnal tidal nature was observed. However, six possible combinations of tidal constituents were used to quantify the tidal asymmetry, involving the interactions between astronomical constituents alone as well as with the higher harmonics. According to the harmonic method, the relative phase difference of M2 and M4 constituents was in the range of 63 to 87.06, suggesting a flood dominance behavior of tidal wave along the estuary. Positive values of the tidal skewness were observed at all stations, with a pronounced increase towards the inland direction. The M2 and M4 interaction was the main contributor to tidal asymmetry, followed by M2-K1-O1, M2-S2-MS4, M2-M4-M6, K1-M2-MK3, and M2-N2-MN4 interactions.
Czasopismo
Rocznik
Tom
Strony
376--386
Opis fizyczny
Bibliogr. 45 poz., map., tab., wykr.
Twórcy
autor
- Department of Marine Physics, Marine Science Center, University of Basrah, Iraq, ali.lafta@uobasrah.edu.iq
Bibliografia
- 1. Abdullah, S.S., Lafta, A.A., Al-Taei, S.A., Al-Kaabi, A.H., 2016. Flushing Time of Shatt Al-Arab River. South of Iraq. Mesopot. J. Mar. Sci. 31 (1), 61-74.
- 2. Abdullah, A.D., Masih, I., van der Zaag, P., Karim, U.F.A., Popescu, I., Al Suhail, Q., 2015. Shatt al Arab River system under escalating pressure: a preliminary exploration of the issues and options for mitigation. Int. J. River Basin Manage. 13 (2), 215-227. https://doi.org/10.1080/15715124.2015.1007870
- 3. Abdullah, S.S., 2002. Analysis of Tide Wave in Shatt Al-Arab Estuary, South of Iraq. Mesopot. J. Mar. Sci. 17 (2), 305-315.
- 4. Abdullah, S.S., 2014. Tide phenomena in the Shatt Al-Arab River, South of Iraq. Journal of the Arabian Gulf 42 (3), 133-155.
- 5. Allafta, H., Opp, C., 2020. Spatio-temporal variability and pollution sources identification of the surface sediments of Shatt Al-Arab River. Southern Iraq. Scient. Rep. 10 (6979), 1-16. https://doi.org/10.1038/s41598-020-63893-w
- 6. Al-Ramadhan, B.M., Pastour, M., 1987. Tidal characteristics of Shatt AlArab River. Mesopot. J. Mar. Sci. 2 (1), 15-28.
- 7. Al-Taei, S.A., Abdullah, S.S., Lafta, A.A., 2014. Longitudinal intrusion pattern of salinity in Shatt Al Arab estuary and reasons. J. KAU: Mar. Sci. 25 (2), 205-221. https://doi.org/10.4197/Mar.25-2.10
- 8. Al-Whaely, U.Q., 2014. Origin and evolution of the Islands of the Shatt Al-Arab River southern Iraq. Ph.D. Thesis, College of Science, Univ. Basrah, 143 pp (in Arabic).
- 9. Al-Yamani, F.Y., Polikarpov, I., Saburova, M., 2020. Marine life mortalities and harmful algal blooms in the Northern Arabian Gulf. Aquat. Ecosyst. Health 23, 196-209. https://doi.org/10.1080/14634988.2012.679450
- 10. Aubrey, D.G., Speer, P.E., 1985. A study of non-linear tidal propagation in shallow inlet/estuarine systems. Pt. I: Observations. Estuar. Coast. Shelf Sci. 21 (2), 185-205. https://doi.org/10.1016/0272-7714(85)9009-4
- 11. Boon, J.D., 2013. Secrets of the Tide: Tide and Tidal Current Analysis and Predictions, Storm Surges and Sea Level Trends. Elsevier, 224.
- 12. Defant, A., 1960. Physical oceanography, 2. Peragamon Press, Oxford, 598 pp.
- 13. Dronkers, J., 1986. Tidal asymmetry and estuarine morphology. Netherlands J. Sea Res. 20 (2), 107-131. https://doi.org/10.1016/0077-7579(86)90036-0
- 14. Friedrichs, C.T., Aubrey, D.G., 1988. Non-linear tidal distortion in shallow well-mixed estuaries: A synthesis. Estuar. Coast. Shelf Sci. 27 (5), 521-545. https://doi.org/10.1016/0272-7714(88)90082-0
- 15. Gallo, M.N., Vinzon, S.B., 2005. Generation of overtides and compound tides in the Amazon estuary. Ocean Dynam. 55 (5), 441-448. https://doi.org/10.1007/s10236-005-0003-8
- 16. Gatto, V.M., van Prooijen, B.C., Wang, Z.B., 2017. Net sediment transport in tidal basins: quantifying the tidal barotropic mechanisms in a unified framework. Ocean Dynam 67, 1385-1406. https://doi.org/10.1007/s10236-017-1099-3
- 17. Godin, G., 1999. The propagation of tides up rivers with special considerations on the upper Saint Lawrence river. Estuar. Coast. Shelf Sci. 48, 307-324. https://doi.org/10.1006/ecss.1998.0422
- 18. Godin, G., 1985. Modification of river tides by the discharge. J. Water. Port Coast. Ocean Eng. 111 (2), 257-274. https://doi.org/10.1061/(ASCE)0733-950X(1985)111:2(257)
- 19. Godin, G., 1991. Frictional effects in river tides. In: Parker, B.B. (Ed.), Tidal Hydrodynamics. John Wiley, Toronto, 379-402.
- 20. Guo, L., Wang, Z.B., Townend, I., He, Q., 2019. Quantification of Tidal Asymmetry and Its Nonstationary Variations. J. Geophys. Res.-Ocean. 124 (1), 773-787. https://doi.org/10.1029/2018JC014372
- 21. Guo, L.C., van der Wegen, M., Jay, D.A., Matte, P., Wang, Z.B., Roelvink, J.A., He, Q., 2015. River-tide dynamics: Exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary. J. Geophys. Res.-Oceans 120, 3499-3521. https://doi.org/10.1002/2014JC010491
- 22. Hicks, S.D., 2006. Understanding Tides. NOAA, National Ocean Service, 83 pp.
- 23. Hoitink, A.J., Hoekstra, P., Van Maren, D.S., 2003. Flow asymmetry associated with astronomical tides: implications for the residual transport of sediment. J. Geophys. Res. 108 (C10), 3315. https://doi.org/10.1029/2002JC001539
- 24. Iglesias, I., Ailez-Valente, P., Bio, A., Bastos, L., 2019. Modeling the main hydrodynamic pattern in shallow water estuaries: The Minho case study. Water 1 (5), 1040. https://doi.org/10.3390/w11051040
- 25. Jewell, S.A., Walker, D.J., Fortunato, A.B., 2012. Tidal asymmetry in a coastal lagoon subject to a mixed tidal regime. Geomorphology 138 (1), 171-180. https://doi.org/10.1016/j.geomorph.2011.08.032
- 26. Kuang, C., Liang, H., Mao, X., Karney, B., Gu, J., Huang, H., Chen, W., Song, H., 2017. Influence of potential future sea-level rise on tides in the China sea. J. Coast. Res. 33 (1), 105-117. https://doi.org/10.2112/JCOASTRES-D-16-00057.1
- 27. Lafta, A.A., 2021a. Estimation of Tidal excursion Length Along The Shatt Al-Arab Estuary, Southern Iraq. Vietnam J. Sci. Tech. 59 (1). https://doi.org/10.15625/2525-2518/59/1/15433
- 28. Lafta, A.A., 2021b. Influence of atmospheric forces on sea surface fluctuations in Iraq marine water, northwest of Arabian Gulf. Arab. J. Geo. 14, 1639. https://doi.org/10.1007/s12517-021-07874-x
- 29. Lafta, A.A., Al-Taei, S.A., Al-Hashimi, N.H., 2019. Characteristics of the tidal wave in Khor Abdullah and Khor Al-Zubair Channels, Northwest of the Arabian Gulf. Mesopot. J. Mar. Sci. 34 (2), 112-125.
- 30. Lafta, A.A., Altaei, S.A., Al-Hashimi, N.H., 2020. Impacts of potential sea-level rise on tidal dynamics in Khor Abdullah and Khor Al-Zubair, northwest of Arabian Gulf. Earth Syst. Environ. 4, 93-105. https://doi.org/10.1007/s41748-020-00147-9
- 31. Lu, S., Tong, C., Lee, D.Y., Zheng, J., Shen, J., Zhang, W., Yan, Y., 2015. Propagation of tidal waves up in Yangtze Estuary during the dry season. J. Geophys. Res.-Oceans 120 (9), 6445-6473. https://doi.org/10.1002/2014JC010414
- 32. Mao, Q., Shi, P., Yin, K., Gan, J., Qi, Y., 2004. Tides and tidal currents in the Pearl River Estuary. Continent. Shelf Res. 24, 1797-1808. https://doi.org/10.1016/j.csr.2004.06.008
- 33. Nidzieko, N.J., 2010. Tidal asymmetry in estuaries with mixed semidiurnal/diurnal tides. J. Geophys. Res. 115, C08006. https://doi.org/10.1029/2009JC005864
- 34. Oliveira, A., Fortunato, A.B., Regob, J.R., 2006. Effect of morphological changes on the hydrodynamics and flushing properties of the Óbidos lagoon (Portugal). Cont. Shelf Res. 26 (8), 917-942. https://doi.org/10.1016/j.csr.2006.02.011
- 35. Parker, B.B., 2007. Tidal Analysis and Prediction. National Ocean Service, NOAA Spec. Publ. https://doi.org/10.25607/OBP-191
- 36. Prandle, D., 2003. Relationships between tidal dynamics and bathymetry in strongly convergent estuaries. J. Phys. Oceanogr. 33 (12), 2738-2750. https://doi.org/10.1175/1520-0485(2003)033〈2738:RBTDAB〉2.0.CO;2
- 37. Provost, L.C., 1991. Generation of overtides and compound tides (review). In: Parker, B.B. (Ed.), Tidal Hydrodynamics. John Wiley, Toronto, 269-295. Pugh, D.T., 1987. Tides, surges and mean sea-level. John Wiley, New York, 486 pp.
- 38. Shahidi, A.E., Parsa, J., Hajiani, M., 2011. Salinity intrusion length: comparison of different approaches. Mar. Eng. 164 (1), 33-43. https://doi.org/10.1680/maen.2011.164.1.33
- 39. Siddig, N.A., Al-Subhi, A.M., Alsaafani, M.A., 2019. Tide and mean sea level trend in the west coast of the Arabian Gulf from tide gauges and multi-missions satellite altimeter. Oceanologia 61 (4), 401-411. https://doi.org/10.1016/j.oceano.2019.05.003
- 40. Song, D., Wang, X.H., Kiss, A.E., Bao, X., 2011. The contribution to tidal asymmetry by different combinations of tidal constituents. J. Geophys. Res. 116, C12007. https://doi.org/10.1029/2011JC007270
- 41. Suh, S.W., Lee, H.Y., Kim, H.J., 2014. Spatio-temporal variability of tidal asymmetry due to multiple coastal constructions along the west coast of Korea. Estur. Coast. Shelf Sci. 151, 336-346. https://doi.org/10.1016/j.ecss.2014.09.007
- 42. Vinita, J., Shivaprasad, A., Manoj, N.T., Revichandran, C., Naveenkumar, K.R., Jineesh, V.K., 2015. Spatial tidal asymmetry of Cochin estuary, West Coast, India. J. Coast. Conserv. 19, 537-551. https://doi.org/10.1007/s11852-015-0405-9
- 43. Wu, R., Jiang, Z., Li, C., 2018. Revisiting the tidal dynamics in the complex Zhoushan Archipelago waters: a numerical experiment. Ocean Model. 132, 139-156. https://doi.org/10.1016/j.ocemod.2018.10.001
- 44. Yu, X., Zhang, W., Hoitink, A.J.F., 2020. Impact of river discharge seasonality change on tidal duration asymmetry in the Yangtze river estuary. Sci. Rep. 10, 6304. https://doi.org/10.1038/s41598-020-62432-x
- 45. Zhang, W., Cao, Y., Zhu, Y., Zheng, J., Ji, X., Xu, Y., Wu, Y., Hoitink, A.J.F., 2018. Unravelling the causes of tidal asymmetry in deltas. J. Hydrol. 564, 588-604. https://doi.org/10.1016/j.jhydrol.2018.07.023
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-28a88f4a-8ecb-47c7-a7f3-89cefd2ebf70