Czasopismo
2022
|
Vol. 55, nr 1
|
634--657
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this work, we study the weighted Kirchhoff problem (…) where B is the unit ball of RN , σ(x)=(log(e∣x∣))N−1 , the singular logarithm weight in the Trudinger-Moser embedding, and g is a continuous positive function on R+ . The nonlinearity is critical or subcritical growth in view of Trudinger-Moser inequalities. We first obtain the existence of a solution in the subcritical exponential growth case with positive energy by using minimax techniques combined with the Trudinger-Moser inequality. In the critical case, the associated energy does not satisfy the condition of compactness. We provide a new condition for growth, and we stress its importance to check the compactness level.
Czasopismo
Rocznik
Tom
Strony
634--657
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
- Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, Tunis, Tunisia, imed.abid@istmt.utm.tn
autor
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia , smbaraket@yahoo.fr
autor
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia , achedjaidane@gmail.com
Bibliografia
- [1] J.-L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud. 30 (1978), 284–346.
- [2] C. O. Alves, F. J. S. A. Corrêa, and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85–93.
- [3] C. O. Alves and F. J. S. A. Corrêa, On existence of solutions for a class of problem involving a nonlinear operator, Comm. Appl. Nonlinear Anal. 8 (2001), 43–56.
- [4] Z. Xiu, J. Zhao, and J. Chen, Existence of infinitely many solutions for a p-Kirchhoff problem in RN, Bound. Value Probl. 2020 (2020), 106, DOI: https://doi.org/10.1186/s13661-020-01403-7.
- [5] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/ 71), 1077–1092.
- [6] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483.
- [7] J. Liouville, Sur l’ equation aux derivées partielles, Journal de Mathématiques Pures et Appliquées 18 (1853), 71–72.
- [8] G. Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys. 37 (1996), 3769–3796, DOI: https://doi.org/10.1063/1.531601.
- [9] G. Tarantello, Analytical aspects of Liouville-type equations with singular sources, in: M. Chipot and P. Quittner (eds.), Handbook of Differential Equations, Elsevier, North Holland, 2004, pp. 491–592.
- [10] E. Caglioti, P. L. Lions, C. Marchioro, and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys. 143 (1992), no. 3, 501–525, DOI: https://doi.org/10.1007/BF02099262.
- [11] E. Caglioti, P. L. Lions, C. Marchioro, and M. Pulvirenti, A special class of stationary flows for two-dimensional euler equations: a statistical mechanics description. II, Comm. Math. Phys. 174 (1995), no. 2, 229–260, DOI: https://doi.org/10.1007/BF02099602.
- [12] S. Chanillo and M. Kiessling, Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Comm. Math. Phys. 160 (1994), no. 2, 217–238, DOI: https://doi.org/10.1007/BF02103274.
- [13] M. K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math. 46 (1993), no. 1, 27–56, DOI: https://doi.org/10.1002/cpa.3160460103.
- [14] A. Adimurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications, NoDEA Nonlinear Differ. Equ. Appl. 13 (2007), no. 5–6, 585–603, DOI: https://doi.org/10.1007/s00030-006-4025-9.
- [15] M. Calanchi and B. Ruf, Trudinger-Moser type inequalities with logarithmic weights in dimension N, Nonlinear Anal. 121 (2015), 403–411, DOI: https://doi.org/10.1016/j.na.2015.02.001.
- [16] P. Drabek, A. Kufner, and F. Nicolosi, Quasilinear elliptic equations with degenerations and singularities, Series in Nonlinear Analysis and Applications, Walter de Gruyter, Berlin, 1997.
- [17] A. Kufner, Weighted Sobolev Spaces, John Wiley and Sons Ltd, 1985.
- [18] M. Calanchi and B. Ruf, Weighted Trudinger-Moser inequalities and applications, Bull. South Ural State Univ. Ser.: Math. Model. Program. Comput. Softw. 8 (2015), no. 3, 42–55, DOI: https://doi.org/10.14529/mmp150303.
- [19] M. Calanchi, B. Ruf, and F. Sani, Elliptic equations in dimension 2 with double exponential nonlinearities, NoDEA Nonlinear Differential Equations Appl. 24 (2017), 29, DOI: https://doi.org/10.1007/s00030-017-0453-y.
- [20] S. Deng, T. Hu, and C.-L. Tang, N-Laplacian problems with critical double exponential non-linearities, Discrete Contin. Dyn. Syst. 41 (2021), no. 2, 987–1003, DOI: http://doi.org/10.3934/dcds.2020306.
- [21] D. G. de Figueiredo and U. B. Severo, Ground state solution for a Kirchhoff problem with exponential critical growth, Milan J. Math. 84 (2016), 23–39, DOI: http://doi.org/10.1007/s00032-015-0248-8.
- [22] D. G. de Figueiredo, O. H. Miyagaki, and B. Ruf, Elliptic equations in 2 with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 3 (1995), 139–153, DOI: http://doi.org/10.1007/s00032-015-0248-8.
- [23] P. L. Lions, The concentration-compactness principle in the calculus of variations, Part 1, Rev. Mat. Iberoam. 11 (1985), 185–201.
- [24] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2010.
- [25] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical points-theory and applications, J. Functional Analysis 14 (1973), 349–381.
- [26] L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), 581–597.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-282a1e15-ac0d-4f90-94bf-451d5a6129bc