Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 23, No. 4 | 271-277
Tytuł artykułu

Design and performance analysis of InP/InGaAsP-MMI based 1310/1550-nm wavelength division demultiplexer with tapered waveguide geometry

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The design and performance analysis of a 1310/1550-nm wavelength division demultiplexer with tapered geometry based on InP/InGaAsP multimode interference (MMI) coupler has been carried out. Wavelength response of demultiplexer of conventional MMI and tapered input and tapered output (tapered I/O) waveguides geometry of the MMI have been discussed. The demultiplexing function has been first performed by choosing a suitable refractive index of the guiding region and geometrical parameters such as the width and length of MMI structure have been achieved. Access width of tapered I/O waveguides have been adjusted to give a low insertion loss (IL) and high extinction ratio (ER) for the considered wavelengths of 1310 nm and 1550 nm. The total size of the demultiplexer has been significantly reduced over the existing MMI devices. Numerical simulations with finite difference beam propagation method are applied to design and optimize the operation of the proposed demultiplexer.
Wydawca

Rocznik
Strony
271-277
Opis fizyczny
Bibliogr. 27 poz., il., wykr.
Twórcy
autor
autor
  • Department of Electronics Engineering, Indian School of Mines, Dhanbad, 826004, India
  • Department of Electronics Engineering, Indian School of Mines, Dhanbad, 826004, India
Bibliografia
  • 1. R.G. Wagner and H. Kobrinski, “WDM applications in broadband telecommunication networks”, IEEE Comniun. Mug. 3, 22-30 (1989).
  • 2. K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, “Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler”, Electron. Lett. 30, 856-857 (1994).
  • 3. T. Negami, H. Haga, and S. Yamamoto, “Guided-wave optical wavelength demultiplexer using an asymmetric Y-junction”, Appl. Phys. Lett. 54, 1080-1082 (1989).
  • 4. A. Tervonen, P. Poyhonen, S. Honkanen, and M. Tahkokokpt, “A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing”, IEEE Photonic. Tech. L. 3,516-518 (1991).
  • 5. M.K. Paiam, C.F. Janz, R.I. Macdonald, and J.N. Broughton, “Compact planar 980/1550 nm wavelength multidemul tiplexer based on multimode interference”, IEEE Photonic. Tech. L. 7 (IO), 1180-1182 (1995).
  • 6. K.C. Lin and W.Y. Lee, “Guided-wave 1.3/1.55 pm wavelength division multiplexer based on multimode interference”, Electron. Lett. 32, 1259-1261 (1996).
  • 7. M. Błahut and A. Opilski, “Multimode interference structures - new way of a passive elements technology for photonics”, Opto-Electron. Rev. 9, 293-300 (2001).
  • 8. X. Li, B. Sun, and Y. Yu, “Ultra-wide bandwidth wavelength selective couplers based on the all solid multi-core Ge-doped fibre”, Opto-Electron. Rev. 22, 166-170 (2014). doi: 10.2478/s 11772-014-0193-z.
  • 9. Y. Shi, A. Srinivasan, and S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides”, IEEE Photonic. Tech. L. 19, 1789-1791 (2007).
  • 10. C.D. Truong, V.C. Hoang, Vu Chung, “A triplexer based on cascaded 2×2 butterfly MMI couplers using silicon waveguides” J. Optical and Quantum Electronics 47, 413-421 (2015).
  • 11. Z. Le, L. Yin, S. Huang, M. Fu, “The cascaded exponential-tapered multimode interference couplers based triplexer design for FTTH system”, Optik 125, 4357-4362 (2014).
  • 12. M. Mayeh and F. Farahi, “Geometrically modified multimode interference waveguides using high refractive index Si-ON Material, for application in wavelength multiplexing/demultiplexing”, in Int. Symp. High Capacity Optical Networks and Enabling Technologies 125, 121-125 (2008).
  • 13. Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “Polarization beam splitter based on cascaded step-size multimode interference coupler”. Opt. Eng. 0001; 52, 077103-077103 (2013). doi: 10.1117/1.0E.52.7.077103.
  • 14. M.H. Ibrahim, S.-Y. Lee, M.-K. Chin, N.M. Kassim, and A.B. Mohammad, “Multimode interference wavelength multi/demultiplexer for 1310 and 1550 nm operation based on BCB 4024-40 photo definable polymer”, Opt. Comm. 273, 383-388 (2007). doi:10.1016/j.optcom.2007.01.006.
  • 15. G. Keiser, Optical Fiber Communications, McGraw-Hill, Fifth edition, 2014.
  • 16. M. Bertogna, InP-Based Integration of Semiconductor Optical Amplifiers And Phase Modulators, Delft University of Technology (2002).
  • 17. Adachi and Sadao,”Refractive indices of III-V compounds: Key properties of InGaAsP relevant to device design”, J. Appl. Phys. 53, 5863-5869 (1982). doi:http://dx.doi.org/10.1063/1.331425.
  • 18. M.T. Hill, G.D. Khoe, and М. K. Smit, “Optimizing imbalance and loss in 2×2 3-dB multimode interference couplers via access waveguide width”, J. Lightw. Technol. 21, 2305-2313 (2003).
  • 19. R. Halir, I. Molina-Fernandez, A. Ortega-Monux, J. G. Wangliemert-Perez, D. X. Xu, P. Cheben and S. Janz, “A design procedure for high-performance, rib-waveguide-based multimode interference couplers in silicon-on-insulator”, J. Lightw. Technol. 26, 2928-2936 (2008).
  • 20. D.J. Thomson, Y. Hu, G.T. Reed, and J.M. Fedeli, “Low loss MMI couplers for high performance MZI modulators”, IEEE Photonic. Tech. L 22, 1485-1487 (2010).
  • 21. R. Halir, A. Ortega-Monux, I. Molina-Fernandez, J.G. Wanguemert-Perez, P. Cheben, D.X. Xu, B. Lamontagne, and S. Janz, “Compact high-performance multimode interference couplers in silicon-on-insulator”, IEEE Photonic. Tech. L. 21, 1600-1602 (2009).
  • 22. OptiBPM, “Waveguide optics modelling software system” in Technical background and tutorials, Version 11.0, © 2011 Optiwave (2011).
  • 23. L.B. Soldano and E.C.M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications”, J. Lightwave. Technol. 13, 615-627 (1995).
  • 24. K. Okamoto, Fundamentals o f Optical Waveguides, Academic Press, 2006.
  • 25. D. Chack, S.K. Raghuwanshi, V. Kumar, and N. Agrawal, “Analysing the Optimum Parameter of an 1×2 MMI Splitter”, in Communication Systems and Network Technologies 3, 1-6 (2013).
  • 26. D. Chack, S.K. Raghuwanshi, V. Kumar, and N. Agrawal, “Field Propagation Study of Y- Branch Assisted by MMI Coupler”, A WER Procedia Information Technology & Computer Science 3, 1795-1800 (2013)
  • 27. D. Chack, N. Agrawal, and S.K. Raghuwanshi, “To analyse the performance of tapered and MMI assisted splitter on the basis of geographical parameters”, Optik - Int. J. Light Electron Opt. 125, 2568-2571 (2014).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2824a80b-31ee-491c-bffe-857d9d4ad2aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.