Czasopismo
2023
|
Vol. 23, no. 2
|
art. no. e130, 2023
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The development of powder metallurgy methods in recent years has caused traditional casting methods to be replaced in many industrial applications. Using such methods, it is possible to obtain parts having the required geometry after a process that saves both manufacturing costs and time. However, there are many material issues that decrease the functionality of these methods, including mechanical properties anisotropy and greater susceptibility to cracking due to chemical segregation. The main aim of the current article is to analyze these issues in depth for two powder metallurgy manufacturing processes: laser powder bed fusion (LPBF) and hot-pressing (HP) methods-selected for the experiment because they are in widespread use. Microstructure and mechanical tests were performed in the main manufacturing directions, X and Z. The results show that in both powder metallurgy methods, anisotropy was an issue, although it seems that the problem was more significant for the samples produced via LPBF SLM technique, which displayed only half the elongation in the building direction (18%) compared with the perpendicular direction (almost 38%). However, it should be noted that the fracture toughness of LPBF shows high values in the main directions, higher even than those of the HP and wrought samples. Additionally, the highest level of homogeneity even in comparison with wrought sample, was observed for the HP sintered samples with equiaxed grains with visible twin boundaries. The tensile properties, mainly strength and elongation, were the highest for HP material. Overall, from a practical standpoint, the results showed that HP sintering is the best method in terms of homogeneity based on microstructural and mechanical properties.
Czasopismo
Rocznik
Tom
Strony
art. no. e130, 2023
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Str, 02-507 Warsaw, Poland, piotr.maj@pw.edu.pl
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Str, 02-106 Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Str, 02-507 Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Str, 02-507 Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Str, 02-507 Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Str, 02-507 Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Str, 02-507 Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Str, 02-507 Warsaw, Poland
Bibliografia
- 1. Akhtar S, Saad M, Misbah MR, Sati MC. Recent advancements in powder metallurgy: a review. Mater Today Proc. 2018;5(9):18649-55. https://doi.org/10.1016/j.matpr.2018.06.210.
- 2. Childerhouse T, Jackson M. Near net shape manufacture of titanium alloy components from powder and wire: a review of state-of-the-art process routes. Metals (Basel). 2019. https://doi.org/10.3390/met9060689.
- 3. Delavari M, Salarvand A, Rahi A, Shahri F. The effect of powder metallurgy process parameters on mechanical properties of micro and nano-iron powder. Int J Eng Sci Technol. 1970;3(9):86-94. https://doi.org/10.4314/ijest.v3i9.7.
- 4. Sudha GT, Stalin B, Ravichandran M. Optimization of powder metallurgy parameters to obtain low corrosion rate and high compressive strength in Al-MoO3 composites using SN ratio and ANOVA analysis. Mater Res Express. 2019. https://doi.org/10.1088/2053-1591/ab2cef.
- 5. Leary M. Powder bed fusion. In: Design for additive manufacturing. Elsevier; 2020. pp. 295-319. https://doi.org/10.1016/B978-0-12-816721-2.00011-7.
- 6. Kumar S. Selective laser sintering/melting. In: Comprehensive materials processing. Elsevier; 2014. pp. 93-134. https://doi.org/10.1016/B978-0-08-096532-1.01003-7.
- 7. Gokuldoss PK, Kolla S, Eckert J. Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting - selection guidelines. Materials. 2017;10(6):672. https://doi.org/10.3390/ma100 60672.
- 8. Wysocki B, et al. Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM). J Mater Process Technol. 2017. https://doi.org/10.1016/j.jmatprotec.2016.10.022.
- 9. Chmielewska A, Jahadakbar A, Wysocki B, Elahinia M, Święszkowski W, Dean D. Chemical polishing of additively manufactured, porous, Nickel - Titanium skeletal fixation plates. 3D Print Addit Manuf. 2021. https://doi.org/10.1089/3dp.2020.0209.
- 10. Seabra M, et al. Selective laser melting (SLM) and topology optimization for lighter aerospace componentes. Procedia Struct Integr. 2016;1:289-96. https://doi.org/10.1016/j.prostr.2016.02.039.
- 11. Boschetto A, Bottini L, Macera L, Veniali F. Post-processing of complex SLM parts by barrel finishing. Appl Sci (Switz). 2020. https://doi.org/10.3390/app10041382.
- 12. Liu S, Guo H. Influence of hot isostatic pressing (HIP) on mechanical properties of magnesium alloy produced by selective laser melting (SLM). Mater Lett. 2020;265:127463. https://doi.org/10.1016/j.matlet.2020.127463.
- 13. Hintze W, von Wenserski R, Junghans S, Moller C. Finish machining of Ti6Al4V SLM components under consideration of thin walls and support structure removal. Procedia Manuf. 2020;48:485-91. https://doi.org/10.1016/j.promfg.2020.05.072.
- 14. Riveiro A, et al. Laser additive manufacturing processes for near net shape components. 2019. https://doi.org/10.1007/978-3-030-10579-2_5.
- 15. Druzgalski CL, Ashby A, Guss G, King WE, Roehling TT, Matthews MJ. Process optimization of complex geometries using feed forward control for laser powder bed fusion additive manufacturing. Addit Manuf. 2020. https://doi.org/10.1016/j.addma.2020.101169.
- 16. Kladovasilakis N, Charalampous P, Tsongas K, Kostavelis I, Tzovaras D, Tzetzis D. Influence of selective laser melting additive manufacturing parameters in Inconel 718 Superalloy. Materials. 2022;15(4):1-19. https://doi.org/10.3390/ma15041362.
- 17. Yang Y, van Keulen F, Ayas C. A computationally efficient thermal model for selective laser melting. Addit Manuf. 2020;31(July 2019):100955. https://doi.org/10.1016/j.addma.2019.100955.
- 18. Zhang J, et al. Influence of particle size on laser absorption and scanning track formation mechanisms of pure Tungsten powder during selective laser melting. Engineering. 2019;5(4):736-45. https://doi.org/10.1016/j.eng.2019.07.003.
- 19. Voisin T, Monchoux JP, Durand L, Karnatak N, Thomas M, Couret A. An innovative way to produce γ-TiAl blades: spark plasma sintering. Adv Eng Mater. 2015;17:1408-13. https://doi.org/10.1002/adem.20150 0019.
- 20. Bochenek K, Węglewski W, Morgiel J, Basista M. Influence of rhenium addition on microstructure, mechanical properties and oxidation resistance of NiAl obtained by powder metallurgy. Mater Sci Eng A. 2018;735:121-30. https://doi.org/10.1016/j.msea.2018.08.032.
- 21. Haynes® International Inc. Haynes®282®Alloy, Datasheet. 2006.
- 22. Vattappara K, Hosseini VA, Joseph C, Hanning F, Andersson J. Physical and thermodynamic simulations of gamma-prime precipitation in Haynes® 282® using arc heat treatment. J Alloys Compd. 2021;870:159484. https://doi.org/10.1016/j.jallcom.2021.159484.
- 23. Polkowska A, et al. Microstructure and hardness evolution in Haynes 282 Nickel-based superalloy during multi-variant aging heat treatment. J Mater Eng Perform. 2019;28(7):3844-51. https://doi.org/10.1007/s11665-019-3886-0.
- 24. Shaikh AS, Schulz F, Minet-Lallemand K, Hryha E. Microstructure and mechanical properties of Haynes 282 superalloy produced by laser powder bed fusion. Mater Today Commun. 2021;26(January):102038. https://doi.org/10.1016/j.mtcomm.2021.102038.
- 25. Otto R, et al. Roadmap for additive manufacturing of HAYNES® 282® superalloy by laser beam powder bed fusion (PBF-LB) technology. Mater Des. 2021;204:109656. https://doi.org/10.1016/j.matdes.2021.109656.
- 26. Yang Y. Microstructural evolution of large cast haynes 282 at elevated temperature. Crystals (Basel). 2021. https://doi.org/10.3390/cryst11080867.
- 27. Deshpande A, Nath SD, Atre S, Hsu K. Effect of post processing heat treatment routes on microstructure and mechanical property evolution of Haynes 282 Ni-based superalloy fabricated with selective laser melting (SLM). Metals (Basel). 2020;10(5):1-13. https://doi.org/10.3390/met10050629.
- 28. Kirka MM, Unocic KA, Kruger K, Forsythe A. Process development for Haynes ® 282 ® using additive manufacturing. Oak Ridge, TN (United States). 2018. https://doi.org/10.2172/1435227.
- 29. Unocic KA, Kirka MM, Cakmak E, Greeley D, Okello AO, Dryepondt S. Evaluation of additive electron beam melting of Haynes 282 alloy. Mater Sci Eng A. 2020;772(June 2019):138607. https://doi.org/10.1016/j.msea.2019.138607.
- 30. Amperprint ® 0233 Haynes ® 282 ® Advanced nickel superalloy for powder bed fusion-General material description. 2020. https://www.hogans.com/am (Online).
- 31. Molak RM, Paradowski K, Brynk T, Ciupinski L, Pakiela Z, Kurzydlowski KJ. Measurement of mechanical properties in a 316L stainless steel welded joint. Int J Press Vessels Pip. 2009;86(1):43-7. https://doi.org/10.1016/j.ijpvp.2008.11.002.
- 32. Brynk T, et al. Fatigue crack growth rate and tensile strength of Re modified Inconel 718 produced by means of selective laser melting. Mater Sci Eng A. 2017;698(October 2016):289-301. https://doi.org/10.1016/j.msea.2017.05.052.
- 33. Pike LM. Development of a fabricable gamma-prime (γ′) strengthened superalloy. In: Proceedings of the International Symposium on Superalloys. 2008. pp. 191-200.
- 34. Christofidou KA, et al. Microstructural Control and Optimization of Haynes 282 Manufactured Through Laser Powder Bed Fusion. Miner Metals Mater Ser. 2020. https://doi.org/10.1007/978-3-030-51834-9_99.
- 35. Gao Y, Ding Y, Chen J, Xu J, Ma Y, Wang X. Effect of twin boundaries on the microstructure and mechanical properties of Inconel 625 alloy. Mater Sci Eng A. 2019;767(August):138361. https://doi.org/10.1016/j.msea.2019.138361.
- 36. Pike LM. Long term thermal exposure of Haynes 282 alloy. In: 7th International Symposium on Superalloy 718 and Derivatives 2010, vol. 2. 2010. pp. 645-660. https://doi.org/10.7449/2010/superalloys_2010_645_660.
- 37. Pavan AHV, Narayan RL, Li SH, Singh K, Ramamurty U. Mechanical behavior and dynamic strain ageing in Haynes®282 superalloy subjected to accelerated ageing. Mater Sci Eng A. 2022. https://doi.org/10.1016/j.msea.2021.142486.
- 38. Unocic KA, Kirka MM, Cakmak E, Greeley D, Okello AO, Dryepondt S. Evaluation of additive electron beam melting of haynes 282 alloy. Mater Sci Eng A. 2020. https://doi.org/10.1016/j.msea.2019.138607.
- 39. Ghiaasiaan R, Ahmad N, Gradl PR, Shao S, Shamsaei N. Additively manufactured Haynes 282: effect of unimodal vs. bimodal γʹ- microstructure on mechanical properties. Mater Sci Eng A. 2022. https://doi.org/10.1016/j.msea.2021.142234.
- 40. HAYNES® 282 ® alloy Principal Features. 2021.
- 41. Shaikh AS, Schulz F, Minet-Lallemand K, Hryha E. Microstructure and mechanical properties of Haynes 282 superalloy produced by laser powder bed fusion. Mater Today Commun. 2021. https://doi.org/10.1016/j.mtcomm.2021.102038.
- 42. Harrison NJ, Todd I, Mumtaz K. Reduction of micro-cracking in nickel superalloys processed by selective laser melting: a fundamental alloy design approach. Acta Mater. 2015;94:59-68. https://doi.org/10.1016/j.actamat.2015.04.035.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-27f90df0-5bb1-4e84-9f7b-10fcc2c6a87e